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Abstract Existing multi-proxy climate reconstruction

methods assume the suitably transformed proxy time series

are linearly related to the target climate variable, which is

likely a simplifying assumption for many proxy records.

Furthermore, with a single exception, these methods face

problems with varying temporal resolutions of the proxy

data. Here we introduce a new reconstruction method that

uses the ordering of all pairs of proxy observations within

each record to arrive at a consensus time series that best

agrees with all proxy records. The resulting unitless com-

posite time series is subsequently calibrated to the instru-

mental record to provide an estimate of past climate. By

considering only pairwise comparisons, this method, which

we call PaiCo, facilitates the inclusion of records with

differing temporal resolutions, and relaxes the assumption

of linearity to the more general assumption of a mono-

tonically increasing relationship between each proxy series

and the target climate variable. We apply PaiCo to a newly

assembled collection of high-quality proxy data to recon-

struct the mean temperature of the Northernmost Atlantic

region, which we call Arctic Atlantic, over the last

2,000 years. The Arctic Atlantic is a dynamically impor-

tant region known to feature substantial temperature vari-

ability over recent millennia, and PaiCo allows for a more

thorough investigation of the Arctic Atlantic regional cli-

mate as we include a diverse array of terrestrial and marine

proxies with annual to multidecadal temporal resolutions.

Comparisons of the PaiCo reconstruction to recent recon-

structions covering larger areas indicate greater climatic

variability in the Arctic Atlantic than for the Arctic as a

whole. The Arctic Atlantic reconstruction features tem-

peratures during the Roman Warm Period and Medieval

Climate Anomaly that are comparable or even warmer than

those of the twentieth century, and coldest temperatures in

the middle of the nineteenth century, just prior to the onset

of the recent warming trend.

Keywords Multiproxy reconstruction � Pairwise

comparisons � Non-linear method � North Atlantic �
Temperature

1 Introduction

Climate reconstructions aim to elucidate the variability of

the climate in the past by inferring climate variables during

the era of interest (Bradley et al. 2003). The reconstructed

variables help in painting a picture of the past and pro-

viding a context for interpreting recent observations and

future predictions. To this end, accurate reconstructions are

vital, which necessitates that the assumptions made by a

particular reconstruction method are appropriate for the

included proxy observations.

All existing multi-proxy reconstruction methods assume

that the relation between a proxy and the target climate

variable is linear (Tingley et al. 2012). The assumption is

often reasonable: many proxy records are known to be

linearly related to, for example, temperature and thus

reconstruction methods that make the assumption perform
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well in many cases. The linearity assumption is also con-

venient: much is known about linear methods (Bingham

and Fry 2010) and it is simple to test if the assumption

holds even approximately. However, it has been argued

that some proxies, while appearing to be linear during the

calibration period, exhibit non-linear behavior outside of

the range of values in the calibration period (Anchukaitis

et al. 2012; Mann et al. 2012a, b). There are also cases

where linear correlation is weak (Ojala and Alenius 2005)

or cannot be directly tested (Tiljander et al. 2003) even if

the proxy is known to be strongly influenced by the target

climate variable.

Linear methods can be used with non-linear proxies if it

is possible to invert the known non-linear relation and

transform the original record to a new record that is linearly

related to the target climate variable. Non-linear methods

have been developed for specific proxy types to reconstruct

the target climate variable (Evans et al. 2006; McKay et al.

2008; Pflaumann et al. 1996; Tolwinski-Ward et al. 2011),

effectively making the mentioned inverse transformation.

However, if proxies are used from multiple sources, finding

suitable inverse transformations for each may be difficult or

even impossible. For example, hydrological proxies

(Maidment 1993) often display non-linear or even thres-

holding type relations with precipitation, as runoff and

sediment deposition only occur for sufficiently high

streamflow, which is in turn a non-linear function of pre-

cipitation. Proxies that exhibit such threshholding behavior

cannot be completely inverse transformed to linearity, since

the exact value of a sample above (or below) the threshold is

unknown. However, such samples still carry information

since their values are known to be higher (or lower) than

any other value that is below (or above) the threshold. If the

linearity of a record cannot be tested, assumed or obtained

by a transformation, the record would generally be exclu-

ded from a multi-proxy reconstruction with current recon-

struction methods. Furthermore, even if a proxy seems

linear and is assumed as such, it may exhibit a non-lin-

ear response to values of the climate variable outside of

those contained within the calibration interval.

Another common assumption for all but one (the

exception is Li et al. 2010) of the existing multi-proxy

reconstruction methods is that they assume the same tem-

poral resolution for all proxy records, while in practice

different proxy records generally have different temporal

resolutions. For example, tree ring records are annually

resolved while lake and marine sediments often have a

much lower resolution. Some reconstructions have used

interpolation to achieve a common resolution (Christiansen

and Ljungqvist 2011; Mann et al. 2008; Moberg et al.

2005; Sundqvist et al. 2010). However, interpolation arti-

ficially increases the influence of the interpolated records,

changes their interpretation, invalidates the assumptions

made by the reconstruction methods, and should thus be

avoided. Another approach is to only include records that

have the same resolution, but then many high-quality

records are excluded.

We present here a novel Composite-Plus-Scale (CPS)

method, PaiCo, so called as it relies on Pairwise Compari-

sons. PaiCo is based on comparing all pairs of sample

values within each proxy record and producing a time series

that best matches all of the pairwise comparisons. The

reconstructed time series is unitless, so must subsequently

scaled to match the units of the target climate variable, and

represents the spatial average of the target climate variable

over the geographical area the proxy records cover.

The pairwise comparisons framework allows us to

assume that the transfer functions between proxy records

and the climate variable are monotonically increasing,

which is a weaker assumption than assuming they are linear.

Specifically, any linear transfer function is also monotonic,

but the opposite does not hold. PaiCo has other favorable

properties in that proxy records need not share common

temporal resolution (Li et al. 2010); standardization of

records is not required (Tingley 2012); and missing values

are handled intrinsically. While PaiCo discards information

about the magnitudes of the proxy values, it also allows

more information to enter into a reconstruction as a greater

variety of proxy records can be included. Furthermore, we

show in a quantitative analysis that PaiCo performs at par

with the best linear methods in many linear cases and

supersedes all existing methods in non-linear cases.

We apply PaiCo to a multi proxy data set from the north-

ernmost region of the Atlantic. The study area is bounded to

60�–90�N and 50�W–30�E, and we call this area the Arctic

Atlantic. Studies of North Atlantic climate variability have

become a central focal point of climate research during recent

decades. North Atlantic climate variability arises from diverse

sources over broad spatial and temporal scales; several natural

processes are working in parallel, sometimes enhancing and

sometimes counteracting each other (Marshall et al. 2001).

Climate at high northern latitudes is greatly affected by

atmospheric pressure patterns, while oceanic processes of the

North Atlantic also affect the regional as well as the global

climate. Furthermore, a number of papers have argued that the

capacity of sea ice to affect climate both through albedo and

air-sea heat exchange and also the ability of sea ice to rapidly

change its distribution make this a good candidate mechanism

for driving abrupt climate changes in the North Atlantic and

perhaps worldwide (Denton et al. 2005; Gildor and Tziper-

man 2003; Li et al. 2005; Kaspi et al. 2004; Timmermann

et al. 2005; Wunsch 2006).

During the past few millennia, climate development in

the North Atlantic sector of the Arctic was punctuated by

centennial-scale warmer and colder episodes, of which the

most well-known are the Little Ice Age (LIA about
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AD1500–1900), the Medieval Climate Anomaly (MCA

about AD900–1200), the Dark Ages Cold Period (DACP

about BC100 to AD700) and the Roman Warm Period

(RWP about BC900–100; Bradley et al. 2003; Korhola

et al. 2000; Lamb 1995; McDermott et al. 2001; Moberg

et al. 2005; O’Brien et al. 1995; Wang et al. 2005).

Although there has been much discussion about the mag-

nitude and geographical extent of these events, it never-

theless seems that the most consistent records of these

classic climate periods come just from the North Atlantic

sector of the Arctic (Bradley et al. 2003; Miller et al.

2010). The climate of the Arctic Atlantic is highly variable,

but current reconstructions do not agree on the relative

magnitudes of different cold and warm spells over the last

two millennia. It is therefore a region well suited to further

analysis using PaiCo, as it allows for the inclusion of a

broader array of proxy types and thus provides a more

complete description of climate variability in this region.

The analysis using PaiCo focuses on the regional mean

temperature, and we defer to future work the study of

spatial patterns of the variability within the Arctic Atlantic.

We present the PaiCo method and associated theoretical

properties in Sect. 2. The qualitative and quantitative prop-

erties of PaiCo are compared to existing methods in Sect. 3.

Section 4 introduces the proxy data from the Arctic Atlantic

and Sect. 5 presents the results of applying PaiCo to this

multiproxy data set. Section 6 closes the paper with final

discussion of both the methodology and our applied results.

2 Method

2.1 Model

Let f be a column vector that represents the time series of

the target climate variable to be reconstructed. The values in

f will represent the average of the climate variable over the

geographical area the proxy records cover with equal

weight for all proxy records. Hence, the reconstruction will

not have a spatial component. For simplicity, we will focus

on reconstructing the annual average temperature, but any

other climate variable could be reconstructed as long as the

proxy records are causally affected by that climate variable.

Let Pk be the vector of random variables corresponding

to the kth proxy record. Each proxy record is a single time

series, such as the d18O measurement from an ice core or a

tree ring width chronology. We model the relation between

the target climate variable and the proxy record values by

Pk
i ¼ gkðXk

i�ðf þ ekÞÞ; ð1Þ

where Pi
k represents the random variable corresponding to

the ith sample value of proxy record k, e is a vector of

noise terms, and gk is the transfer function for proxy k. We

use the convention that the subscript indexes a variable and

� denotes all elements of the corresponding index. For

example, Xij is the value of the matrix X at row i and

column j. The row vector Xk
i� represents the linear combi-

nation of the noisy terms f þ e that the proxy sample i

supports, i.e., Xk
i� accounts for the averaging behavior of

the proxy record. The selection and averaging matrices Xk

are discussed in Sect. 2.3. The noise terms ek are assumed

to follow a mean-zero multivariate normal distribution with

covariance matrix R. While other noise structures are

possible, multivariate normal variables result in a tractable

maximization problem (see Sect. 2.4), and are likely a

reasonable assumption for most proxies.

The transfer function gk models the unit transformation

from the linearly combined noisy climate variable to the

proxy record. Existing reconstruction methods assume that

the transfer function gk is linear, i.e., gkðxÞ ¼ akðxÞ þ bkðxÞ
for some ak; bk 2 R, with appropriate scaling for the noise

covariance structure R, and many additionally assuming

ak [ 0. For example, the linear model Pk
i ¼ akf i þ bk þ ei

can be expressed in Eq. (1) with gkðxÞ ¼ akðxÞ þ bkðxÞ and

noise covariance R=ak:

The major assumption underpinning PaiCo is that there

is a monotonically increasing function relating the proxies

to the temporally averaged climate variables. That is, for

any x and y, it holds that x \ y, gk(x) \ gk(y). Assuming

only monotonically increasing transfer functions corre-

sponds to saying that an increase in the value of a proxy

record corresponds to an increase in the climate variable,

but the amount of change in the climate variable is

unknown. If the transfer function was assumed linear,

a unit increase in the proxy record would necessarily cor-

respond to an increase of ak in the climate variable.

Therefore, we do not assume as much about the relation

between a proxy record and the target climate variable as

existing methods do, but still assume the proxies are

informative about the underlying climate variable.

PaiCo thus allows for the inclusion of proxies that are

linear in the climate over the calibration interval, but that

may feature a different response to climate values that are

outside of the range of the calibration interval values.

Figure 1 illustrates examples of both linear and mono-

tonically increasing transfer functions. A linear transfer

function is a straight line while a monotonically increasing

transfer function is any function that increases when the

input value increases. All linear transfer functions are also

monotonically increasing assuming the coefficient ak is

positive. Note that if the transfer function is monotonically

decreasing, the proxy record should be multiplied by -1,

i.e., flipped upside down. In the remainder of the paper, we

Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic Region 2041

123



use only the word monotonic when we mean monotoni-

cally increasing, unless otherwise stated.

Let pi
k be the realization of Pi

k in Eq. (1), i.e., pi
k is the ith

observed value of the proxy record k. Instead of using the

actual values of the realizations pi
k, we only compare which

is greater of pi
k and pj

k for all distinct pairs of i and j. These

pairwise comparisons disregard the magnitudes of the

values in a proxy record by only considering their pairwise

orderings. The effect is that we can ignore a monotonic

transfer function gk, since

Pk
i \Pk

j

, gkðXk
i�ðf þ ekÞÞ\gkðXk

j�ðf þ ekÞÞ
, Xk

i�ðf þ ekÞ\Xk
j�ðf þ ekÞ:

ð2Þ

Note that comparisons are made only within a proxy

record, and not between proxies, thus allowing heteroge-

neous proxies with different forward models gk and tem-

poral properties Xk to be combined. The error term ek

makes this comparison a Bernoulli random variable, with

the difference Xk
i�f � Xk

j�f determining the probability of

Pi
k \ Pj

k and, likewise, the probability of Pi
k [ Pj

k.

Using the model of Eq. (1) in Eq. (2) allows us to dis-

regard the details of how the climate variable is transferred

to a proxy, as long as we can assume the transfer function

is both stationary and monotonically increasing. If a proxy

truly tracks the changes of the climate variable, increases

and decreases in the variable are reflected in similar

behavior in the proxy. This allows us to use proxies that are

known to be strongly related to the target climate variable

but for which linearity can not be assumed or tested. There

are trade-offs in making the less restrictive assumption of

monotonicity, which we explore in Sect. 3.

Stationarity, in some shape or form, is also a necessary

requirement, as otherwise we could not infer anything

about the past. Stationarity in this model means that the

relation between the climate variable and proxy remains

unchanged throughout time.

Another effect of pairwise comparisons is that we do not

require the proxies to be standardized before use as any

scaling with a positive coefficient and any shifting can be

considered to be contained in the transfer function gk.

Therefore, such operations make no difference with respect

to the model.

Thurstone (1927) was the first to describe a method

based on pairwise comparisons for applications in psyc-

honometrics, and more recent developments can be found

in Stern (1990).

2.2 Intuition behind pairwise comparisons

We develop the intuition behind pairwise comparisons by

first considering a special case of the general formalism of

Eq. (2). Let each proxy record and the target f have the

same temporal structure and let the transfer functions

be the identity, i.e., gk(x) = x for all k. In this case, each

value of a proxy record is simply a noisy version of the

corresponding target value. For a single pair of time

points, the agreement between the proxy records over the

ordering of the two corresponding observations within

each proxy series is directly related to the difference

between the target values. The more proxy time series

feature a higher value for the first time point, the greater

the value of the target at the first time point as compared

to the second. Similarly, if the proxy series are about

equally split between featuring the larger value at the first

and second time points, then there is likely not much

difference between the corresponding target values.

Assuming Gaussian noise, we can use the amount of proxy

agreement to calculate the relative difference between the

pair of target values.

We now develop the mathematical formalism for the

simple case, with g the identity and the proxies and climate

having the same resolution. The only information we use is

the collection of pairwise comparisons pi
k \ pj

k for all

distinct pairs (i, j) of every proxy record k. In the simplistic

setting above, Pi
k = Pi = fi ? ei. As the values pi

k are

realizations of Pi
k, the pairwise comparisons pi

k \ pj
k are

realizations of Pi
k \ Pj

k, and in this simple case, they are

also realizations of Pi \ Pj. Because of this h, the proba-

bility that Pi \ Pj, can be estimated with ĥij ¼
1
M

PM
k¼1 dðpk

i \pk
j Þ; where dð�Þ is the indicator function that

returns 1 when the inner test is true and 0 otherwise. The

value ĥij is the fraction of proxy records for which the

proxy value i was less than the proxy value j, i.e., it is a

measure of agreement between proxies. As Pr(Pi \ Pj) =

Pr(fi ? ei \ fj ? ej), the value ĥij is also an estimate of the

probability h = Pr(fi ? ei \ fj ? ej). We have already

assumed e is multivariate normal with zero mean

and covariance R. Let us further assume the covariance

matrix is diagonal, R ¼ r2I. Then,

Fig. 1 Examples of linear (red) and monotonic (blue) functions. Note

that the linear functions are also monotonic, but not vice versa
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hij ¼ Prðf i þ ei\f j þ ejÞ
¼ Prðei � ej\f j � f iÞ
¼ Uðf j � f i; 0; 2r2Þ

where Uð�; l; r2Þ is the Gaussian cumulative distribution

function with mean l and variance r2. Inverting the last

equality gives a relative value for the difference fj - fi,

1
ffiffiffiffiffiffiffi
2r2
p ðf j � f iÞ ¼ U�1ðhij; 0; 1Þ:

Therefore, the value of hij is a measure of the difference

between fj and fi. The larger the difference fj - fi, the

closer hij is to 1 and the more we expect to see pi
k \ pj

k. If

the difference is small, ĥij � :5 and the fraction of pi
k \ pj

k

is roughly equal to the fraction of pj
k \ pi

k. In other words,

the fraction of proxies with pi
k \ pj

k gives information

about the difference fj - fi. This result is the main idea

underpinning PaiCo.

The intuition behind using pairwise comparisons on the

proxy scale to infer difference in the target climate is illus-

trated in Fig. 2. The more general case, presented in Sect. 2.4,

is more involved due to the averaging of the climate inherent

to many proxies that is modeled using the matrices Xk.

2.3 Temporal resolution and change of support

Proxy records often have different temporal characteris-

tics. Ice core records are often annually resolved, i.e.,

there is a sample for every year, and have annual support,

i.e., only the climate of the respective year affects the

corresponding proxy observation. Lake sediment records,

on the other hand, are often variably resolved since the

time between samples can be anything from a few years

to even several centuries, while the support of each

sample often spans several years. Furthermore, quite often

the target f is expected to be annually resolved with an

annual support. This problem of inferring values for

f from data that have different temporal characteristics

is an example of a change-of-support problem (Tingley

et al. 2012).

The linear combinations Xk
i� indicate the values of f

that affect the value of sample i of proxy k. The vectors Xk
i�

are assumed known with the requirement that the elements

have to sum to 1, Xk
i�½1; � � � ; 1�

> ¼ 1. To give an example of

Xk
i�, let us assume f is to be annually resolved with annual

support. Consider a proxy record, k = 1, with annual res-

olution and annual support. Each vector X1
i� then consist of

zeros, with a single entry of 1 such that X1
i�ðf þ e1Þpicks out

the noisy value fl ? el
1 for the year l corresponding to the

proxy observation. Consider next another proxy record,

k = 2, with biannual support and 5-year resolution. Then

X2
1� ¼ ½12 ; 1

2
; 0; 0; 0; 0; 0; 0 � � � ; 0� and X2

2� ¼ ½0; 0; 0; 0; 0;
1
2
; 1

2
; 0; � � � ; 0�; and hence, X2

1�ðf þ e2Þ ¼ 1
2
ðf1 þ e2

1Þ þ
1
2
ðf2 þ e2

2Þ and X2
2�ðf þ e2Þ ¼ 1

2
ðf5 þ e2

5Þþ 1
2
ðf6 þ e2

6Þ. In

other words, the term Xk
i�ðf þ ekÞ in Eq. (1) calculates the

weighted average of the noisy values f ? e over the time

(e.g., years) the sample i of proxy k supports. Resolution

and support are both encoded in Xk
i� with, roughly speaking,

sample time determining the position of the non-zero val-

ues in Xk
i� and support determining how many consecutive

values there are. These linear combinations are similar to

those discussed by Li et al. (2010) and Tingley et al.

(2012).

A B

C D

E F

Fig. 2 Illustration of pairwise comparisons, where proxy values are

simply noisy versions of the target, i.e., proxies have the same

temporal structure as the target and the transfer functions are

gk(x) = x for all k so that Pi
k = Pi = fi ? ei. A Probability density of

the target plus noise through time, with darker colors indicating

regions of higher probability. The black line is the target without

noise. The time points ti correspond to the values target values fi.

B Probability densities for proxy values, represented by random

variables P1 = f1 ? e1, P2 = f2 ? e2 and P3 = f3 ? e3. Notice that

the target values determine how much the densities of the proxy

values overlap. For a pair of time points, the overlap causes

disagreement when comparing observed proxy values, and the

amount of disagreement over all proxies is directly related to the

distance of the target values. C Probability of P1 being smaller than

P2. Since f2 and f1 are close, the probability Pr(P1 \ P2) is close to .5,

which means the disagreement among proxies will be large. D The

observed proxy values pi
k are realizations of Pi

k = P1, and therefore,

the pairwise comparisons p1
k \ p2

k are realizations of comparisons

P1 \ P2,f1 ? e1 \ f2 ? e2. The fraction of p1
k \ p2

k among M proxy

records gives an estimate of Pr(P1 \ P2) = Pr(f1 ? e1 \ f2 ? e2).

E The probability of P3 being smaller than P2. Now that f3 and f2 are

far apart, the probability Pr(P3 \ P2) is close to 1 and the proxies will

mostly agree on the pairwise order of the values. F Similarly to D,

fraction of p3
k \ p2

k gives an estimate of Pr(P3 \ P2) =

Pr(f3 ? e3 \ f2 ? e2)
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There are some special cases we need to consider. Some

proxy records, including many tree ring chronologies, may

only have seasonal support, while the target climate vari-

able is often required to be annually resolved with annual

support. In such case, the model in Eq. (1) is incorrect, since

Xk
i�ðf þ ekÞ, for any definition of Xk

i�; is an annual average

over years while pi
k only reflects the seasonal climate. To fix

this, there are several possibilities. One option is to make

the target f have the same minimum support as the proxy

records. For example, f could have seasonal or monthly

resolution and support, and Xk
i� can then be defined as

before. The second solution is to only include records that

have the same seasonal support, and then inferring the

target at this common same seasonal support. This option

has been used before in climate reconstructions that target a

specific season (e.g., Kaufman et al. 2009). A final option is

to ignore seasonality and assume that all proxy observa-

tions have at least annual support. In other words, the

growth season support of a tree ring chronology is ignored

and it is assumed to be sensitive to annual climate varia-

tions (e.g., Ljungqvist 2010; Moberg et al. 2005).

Another special case to consider is the averaging

behavior of some proxy records. For example, let us con-

sider using an ice core record of 5-year averages of d18O to

reconstruct annually resolved and supported temperature.

In this case, the model

Pk
i ¼ Xk

i�g
kðf þ ekÞ ð3Þ

might be more reasonable than the one in Eq. (1), since Pi
k

now expresses, with a suitable Xk
i�, the 5-year average of the

transformed noisy temperature. The term gk(f ? ek) applies

the function gk separately to each element of the input

vector. With Eq. (3), the transfer function is implicitly

assumed linear, since only if gk is linear does it hold that

Xk
i�g

kðf þ ekÞ\Xk
j�g

kðf þ ekÞ
gkðXk

i�ðf þ ekÞÞ\gkðXk
j�ðf þ ekÞÞ

Xk
i�ðf þ ekÞ\Xk

j�ðf þ ekÞ;
ð4Þ

and PaiCo requires the inequalities in Eq. (4) to hold. This

does not violate the assumptions of the method, but gk is

assumed linear instead of monotonic for this proxy.

Finally, we discuss pollen records, but the discussion

applies to other sediment proxies, such as chironomids.

First note that we will not use the observed abundances of

such a proxy but the published reconstruction calculated

from the abundances. For example, we will later use the

reconstructed temperature from Luoto et al. (2009) and not

the observed chironomid abundances.

Each year, pollen is deposited in the sediment and these

annual depositions of pollen reflect the climate over a span

of several preceding years. If we were able to sample a

sediment core precisely at annual scale, we would have an

annually resolved proxy and each sample would support

several years. Let Zk
j� express the support of each year of

deposition, such that Zk
j�ðf þ ekÞ expresses the noisy climate

averaged over the years the single year j of deposition

supports. However, sediment cores can often only be sam-

pled at a much coarser scale, and each sample is an average

over the deposition included in the sample. An appropriate

model for a sediment proxy value would thus be

Pk
i ¼ Yk

i�g
kðZkðf þ ekÞÞ; ð5Þ

where Yk
i� expresses how the deposition of each year was

averaged to produce the sample i of proxy k. Because of the

averaging Yk
i�; the transfer function gk is again implicitly

assumed linear, since only then do the inequalities in

Eq. (4) hold. Fortunately, many of the published pollen

reconstructions are already in degrees Celsius, which

means gk is linear by definition. With linear gk, the

model in Eq. (5) is equivalent to

Pk
i ¼ gkðYk

i�Z
kðf þ ekÞÞ

with respect to the inequalities Eq. (4). To use such a

record, both Yk
i� and Zk need to be determined to find out

the linear combinations Xk
i� ¼ Yk

i�Z
k. In reality, the aver-

aging linear combinations Yk
i� can be derived from the

sample limits, which in turn can be calculated fairly easily

as shown in Sect. 2.8. However, determining the support

matrices Zk is outside of the scope of this work and,

therefore, we will assume them to be the identity matrices

in the analysis of Arctic Atlantic records.

2.4 Likelihood of pairwise comparisons

We now develop the mathematical formalism in the gen-

eral case of Eq. (2), and describe our approach to maxi-

mizing the likelihood. Using the model in Eq. (1), we

define the likelihood by comparing all pairs of observed

proxy values pi
k for each proxy record:

Prðfpk
i gjfÞ

¼
YM

k¼1

Y

i;j:pk
i
\pk

j

PrðPk
i \Pk

j jfÞ

¼
YM

k¼1

Y

i;j:pk
i
\pk

j

PrðXk
i�ðf þ ekÞ\Xk

j�ðf þ ekÞÞ

¼
YM

k¼1

Y

i;j:pk
i
\pk

j

UððXk
j� � Xk

i�Þf; 0; r2
jiÞ;

ð6Þ

where M is the number proxy records, Uðx; 0; r2Þ is the

value of the cumulative distribution function of a Gaussian
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distribution with 0 mean and r2 variance, and

r2
ji ¼ ðXk

j� � Xk
i�ÞRðXk

j� � Xk
i�Þ
>

, where R is the covariance

matrix of the noise terms. Note that R is common to all

proxies, which means that the noise variance is equal for

each proxy. Therefore, we assume that each proxy, prior to

lossy averaging and one-to-one transform of gk, is equally

informative of the climate. We explore the effects of

departures from this assumption in Sect. 3.2.

The likelihood in Eq. (6) is a variant of Thurstonian

scaling (Lipovetsky and Conklin 2004). We present here

the iteration formulas to find the maximum likelihood

solution to Eq. (6). First, let us simplify the likelihood by

defining a matrix A, which stacks the vectors ððXk
j� �

Xk
i�ÞRðXk

j� � Xk
i�Þ
>Þ�

1
2ðXk

j� � Xk
i�Þ for all k and fði; jÞ j

pk
i \pk

j g in to a single matrix with height
PM

k¼1 jfði; jÞ j
pk

i \pk
j gj and width |f|. Notice that the multiplier before the

last ðXk
j� � Xk

i�Þ is a scalar. We also add a regularization

term for f, since the columns of A are linearly dependent.

We regularize the calculations with the multivariate

Gaussian distribution with zero mean and covariance

matrix R0: The objective function to maximize can then be

expressed as

FðfÞ ¼
Y

s

UðAs�f; 0; 1Þ/ðf; 0;R0Þ; ð7Þ

where s is the row index of A that runs through all of the

rows of A:
The idea in the optimization is to start from a close

enough solution and use Newton–Raphson method

(Bonnans 2006) to find the location where the gradient of

the log-objective is zero on all dimensions. The iteration

from solution fa to fa?1 is carried out by solving the linear

system

HFðfaÞðfaþ1 � faÞ ¼ �rfFðfaÞ;

where HFðfÞ is the Hessian matrix of F. The gradient of F

has the form

rf FðfaÞ ¼
X

s

/ðAs�f
aÞ

UðAs�f
aÞAs� � R�1

0 fa

and the Hessian is

HFðfaÞ ¼ �
X

s

/ðAs�f
aÞ

UðAs�f
aÞAs�f

a þ /ðAs�f
aÞ2

UðAs�f
aÞ2

 !

A>s�As�

� R�1
0 ;

where /(x) and UðxÞ are the probability density and

cumulative distribution function, respectively, of a

Gaussian random variable with zero mean and unit

variance. However, if the Hessian matrix HFðfaÞ is

singular and the regularization R0 is weak, the iteration

may fail to find a reasonable solution. To solve this, we use

the Levenberg–Marguardt-style damping (Marquardt 1963)

ðHFðfaÞ þ kdiagððHFðfaÞÞÞðfaþ1 � faÞ ¼ �rfFðfaÞ;

where diagð�Þ is the diagonal of the given matrix with other

elements set to 0, and k is the damping factor. With small

k, the iteration is close to the Newton–Raphson method,

and with large k, the method becomes close to the gradient

descent method.

As initial step, we use the heuristic starting point f0 ¼
P

s A
>
s� ; which produces a time series roughly similar to the

final result. We carry out the iteration until the change in

F(fa) between successive iterations is sufficiently small or a

maximum number of iterations is achieved. An imple-

mentation of the method is available in the Electronic

Supplementary Material.

When the iteration has converged, the vector fa contains

the maximum likelihood estimate f̂ml of f. The estimate f̂ml

does not have units and needs to be calibrated to instru-

mental data. Any of the calibration methods used by other

CPS methods could be used. Even the more involved

Bayesian methods (Li et al. 2010; Tingley and Huybers

2010a) could be used with f̂ml as the single proxy record.

For simplicity, we will use the method-of-moments for

calibration, where the estimate f̂ml is shifted and scaled

such that it will have the same mean and variance as the

instrumental data over the calibration period. The cali-

brated time series is later denoted as f̂cal. Note that the

estimate f̂ml is noisy since the number of proxy records is

limited. The noise in instrumental data together with the

noisy estimate creates the regression dilution problem

(Ammann et al. 2010) as faced by other reconstruction

methods. We chose to calibrate with the method-of-

moments instead of regressing f̂ml on the instrumental data,

since the former is slightly better at dealing with the

regression dilution problem even though the latter is, in

theory, optimal with respect to prediction error. Assuming

i.i.d noise in the instrumental data, the dilution problem

could be alleviated for regression by smoothing both f̂ml

and the instrumental data, but it would have been difficult

to choose the type and amount of smoothing without

resorting to heuristics. Hence, we chose method-of-

moments.

2.5 Estimating noise variance

The choice of distribution for noise ek in Eq. (1) is due to

convenience: the linear combination of multivariate

Gaussian variables is also a Gaussian variable. If other

distributions are used, the iteration formulas for the max-

imum likelihood solution need to be updated accordingly.
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We have defined the mean of the noise to be zero in Eq.

(6). This requirement is not necessary, as any shift of all

elements of f with a common scalar would not affect the

likelihood function, and therefore, we chose to use 0 for

simplicity. However, the covariance structure R in Eq. (6)

can be defined freely. One could, for instance, make the

noise terms independent with a common variance, which

would correspond to a diagonal covariance matrix with a

constant value on the diagonal. Furthermore, auto-corre-

lated noise can also be represented in the covariance

matrix, but the amount of auto-correlation has to be defined

by the user.

The sample variance of the maximum likelihood esti-

mate f̂ml is related to the sample variance of the target

values f and the magnitude of noise, R. Let us decompose

the noise covariance matrix to noise variance re
2 and cor-

relation R, i.e., R ¼ r2
eR. The CDFs in Eq. (6) can then be

written as

UððXk
j� � Xk

i�Þf; 0; r2
jiÞ

¼ U ððXk
j� � Xk

i�ÞRðkj� � Xk
i�Þ
>Þ�

1
2ðXk

j� � Xk
i�Þ

f

re
; 0; 1

� �

:

When we calculate the solution to Eq. (6) with the linear

combinations ððXk
j� � Xk

i�ÞRðXk
j� � Xk

i�Þ
>Þ�

1
2ðXk

j� � Xk
i�Þ, we

can see that the resulting maximum likelihood estimate f̂ml

is actually an estimate of f
re

. The sample variance of

f̂ml; var½̂fml� ¼ 1
n

Pn
i¼1ððf̂mlÞi � 1

n

Pn
i¼1ðf̂mlÞiÞ

2
, will express

the relation in magnitudes of the target signal f and noise e,

i.e., the signal-to-noise ratio (SNR). When the maximum

likelihood estimate f̂ml is calibrated to instrumental data to

produce f̂cal, the noise variance can be estimated by

r̂2
e ¼

var½f̂cal�
var½̂fml�

: ð8Þ

Therefore, we can very easily estimate the noise variance

from the uncalibrated and calibrated estimators. However,

very strong regularization may decrease var½̂fml� and,

therefore, increase the estimate r̂2
e .

2.6 Estimating uncertainty

The estimated noise variance in the previous section is not

a direct measure of uncertainty of the calibrated maximum

likelihood estimate f̂cal. We use bootstrapping to estimate

the uncertainty by resampling all the data that is input to

PaiCo. The proxy records are resampled with replacement,

which, according to the model in Eq. (1), takes into con-

sideration the effect of different noise realizations, tem-

poral structures and transfer functions. The instrumental

data is more difficult, since it is an uncertain representation

of the target climate variable and we only have a single

realization of it, hence we cannot carry out similar

resampling with replacement. To account for this uncer-

tainty, we assume the instrumental data is simply the target

climate variable added with zero mean Gaussian noise, i.e.,

fI �Nðf; r2
I IÞ, as is commonly done (Tingley et al. 2012).

However, since we do not have a non-noisy version of the

target climate variable during the instrumental period, we

use the instrumental data we have as an estimate of it. The

instrumental noise variance rI
2 needs to be given by the

user, since we have no reliable way of estimating it from a

single time series of instrumental data. Putting everything

together, a bootstrap sample is generated by resampling the

proxy records with replacement and adding to the instru-

mental data independent zero mean Gaussian noise with

noise variance rI
2, and using all this with PaiCo. The

bootstrap samples can then be used to calculate uncer-

tainties for the various statements made about the results.

The resulting ensemble is a collection of reconstructions

based on resampling the predictor network and, for each of

these bootstrapped data sets, scaling the pairwise MLE to

match the mean and variance of the instruments plus noise

over a calibration interval. The spread in the resulting

ensemble is a measure of the uncertainty in our best esti-

mate of the past climate. The ensemble produced in this

manner has a different interpretation than Bayesian pos-

terior sampling (Li et al. 2010; Tingley and Huybers

2010a), which produces a collection of equally likely real-

izations of the climate conditional on the data and modeling

assumptions. Our ensemble is useful for characterizing the

confidence in our best estimate of past climate that arises

from the particular collection of proxy time series used to

estimate model parameters. However, the ensemble cannot

be used to calculate probabilities for events in the past

climate, since the ensemble is based on a single realization

of the climate and not all possible realizations.

Note that if rI
2 is estimated, the accuracy of the estimate

affects the accuracy of the uncertainty estimates. If rI
2 is

underestimated, then the uncertainty is also underesti-

mated. As a special case, when the instrumental data is

noisy but the noise is ignored, then rI
2 can be seen to be

estimated as 0 and, therefore, it is severely underestimated.

An accurate instrumental noise variance is important for

the accuracy of the uncertainty estimates. Further dis-

cussing the estimation of the instrumental noise variance is

out of the scope of this paper.

2.7 Temporal fidelity

It has been suggested (Cook et al. 1995) that proxies have

different fidelities to represent variations of different
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temporal extent. For example, tree rings have been con-

sidered to only accurately represent variations in at most

decadal scale, while pollen records represent variations in

multidecadal and centennial scale (Moberg et al. 2005).

The likelihood function in Eq. (6) allows taking this

information into consideration. If, for example, one would

only trust a proxy record to accurately represent variations

in a decadal or smaller scale, it is possible to remove any

pairwise comparison for that record from Eq. (6) where

samples are more than a decade apart. This has the effect

that the comparison of a pair of proxy values is only

considered if the temporal distance is at most a decade. As

an example, if two proxy observations are separated in time

by 100 years, then the pairwise comparison between them

would not be included in the likelihood. PaiCo thus has the

flexibility to incorporate information from the proxies on

selective timescales, so can reflect the scientific under-

standing of proxies that are not faithful recorders of climate

at all timescales.

2.8 Inferring sample boundaries

Calculating the linear transformations Xk
i� requires knowl-

edge about the temporal boundaries of each sample of a

proxy record. However, this information is often not

available for records in the online databases nor even cal-

culated by the original investigators. Optimally, if the age-

depth model is available, the sample boundaries in depth

could be used with the age-depth model to infer the tem-

poral boundaries of each sample. However, the age-depth

model is not always available, but samples from it are often

tabulated with the proxy records as sample depth and

sample middle age. These data can be used to approximate

the age-depth model and to infer the temporal bounds of

each sample from the depth boundaries.

Let ti
k be the middle age of sample i of proxy record k,

and let di
k be the corresponding depth. The age does not

need to be the middle age, but can be the top or bottom age

as long as di
k corresponds to the same position in the

sample. Let di1
k and di2

k be the top and bottom depths of

sample i of proxy record k, respectively. The idea is then to

use an appropriate interpolation method with tk and dk to

calculate the ages ti1
k and ti2

k at depths di1
k and di2

k . The

calculated top and bottom ages ti1
k and ti2

k then define the

temporal boundaries for each sample i that can subse-

quently be used to define Xk
i�:

There are no restrictions to the interpolation method

used. However, there is a need for extrapolation at either

end, since, for example, middle ages and respective middle

depths do not cover the top nor bottom-most boundary of a

core. We use piecewise-linear interpolation since the

age-depth models are often not very complex functions and

thus a linear interpolation between samples is expected to

produce adequate results.

3 Comparisons between PaiCo and related methods

Several methods for climate reconstructions from multiple

proxy sources have been previously proposed. See Tingley

et al. (2012) for latest review. We compare PaiCo to

method-of-moments (MoM), also known as variance

matching (Lee et al. 2008); ordinary least squares (OLS);

principal component regression (PCReg, Tingley et al.

2012); RegEM (Schneider 2001); the method by Li et al.

(2010) (LNA) and BARCAST (Tingley and Huybers

2010a).

3.1 Qualitative comparisons

This section lists and discusses the most important prop-

erties of PaiCo and compares them to the selected climate

reconstruction methods. Table 1 summarizes the qualita-

tive comparison of different climate reconstruction meth-

ods. The comparison is based on the current state of the

methods. Many of the methods could possibly be extended

to improve their properties with respect to this comparison.

3.1.1 Transfer function

Existing climate reconstruction methods all assume the

transfer functions between proxy records and temperature

are linear. However, it is known that some proxies are not

linearly related to, for example, temperature (Anchukaitis

et al. 2012; Maidment 1993; Mann et al. 2012a, b; McKay

et al. 2008). When a non-linear transfer function is known

or adequately approximated, it may be possible to invert

the transfer function and bring the proxy record close to

linear. Furthermore, many of the published high-quality

proxy records are known to be linearly related to, for

example, temperature or are even reconstructions of the

temperature. Assuming linearity is often reasonable, and

many raw proxy observations are processed to reflect a

linear relationship with the target climate variable. If lin-

earity can be assumed for all of the proxy records in a

multi-proxy reconstruction, then linear methods should be

used, as the more general assumptions of PaiCo are not

required.

There may be cases where it is not reasonable to assume

linearity. For example, the values of the proxy in the pre-

diction interval may be different from those in the cali-

bration interval, so that the predictions based on linearity

require extrapolation of the linear relationship outside of

Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic Region 2047

123



the calibration range. As the scientific understanding of

many proxies is imperfect, the less restrictive assumption

of monotonicity may be preferred. The weaker assumption

may allow for the inclusion of more data sources than

only those proxies that are well-known to have linear

relationships with the target climate. There is a trade-off in

doing so: on the one hand, PaiCo can include more infor-

mation in the form of additional proxies, while on the

other, PaiCo loses information from those truly linear

proxies by using the weaker assumption of a monotonic

transfer function. Quantitative experiments (Sect. 3.2)

suggest that the loss of information is small, as PaiCo

results in inferences that are competitive with linear

methods when applied to linear proxies.

3.1.2 Auto-correlated noise

In LNA, noise is assumed to follow an AR(2) model and

the parameters of the AR-process are estimated via

Bayesian inference. In BARCAST, the latent temperature

field is modeled as an AR(1)-process. It is possible to

utilize information about auto-correlated noise in both

PaiCo and RegEM, possibly with slight modification of the

current implementations of the methods. However,

obtaining this information may be difficult in practice, and

therefore, independent noise is often assumed for RegEM

and the same assumption is made for PaiCo in the rest of

this paper. In MoM and OLS, noise is assumed independent

(Tingley et al. 2012). While least squares regression

models can be built for correlated noise, we do not consider

the resulting weighted regression models as equivalent to

OLS as used in the paleoclimate community. In PCReg,

auto-correlated noise will likely appear as one or more

principal components, since, assuming the model of PCReg

is correct, the auto-correlated noise of each proxy is

independent between proxies and independent of the target.

If the principal components for regression are chosen

appropriately, the auto-correlated noise should be ignored.

3.1.3 Multiresolution

While many of the proxy records used to this day have

annual resolution, there are still numerous records that have

subannual resolution. Only LNA and PaiCo can handle

proxy records of various resolutions. If neither of those

methods are used, the only viable option is to only use

proxy records with the same resolution and exclude any

other records. Note that BARCAST could be quite easily

extended to handle multiple resolutions with, for example,

ideas from LNA. However, this comparison is based on the

current state of these methods.

3.1.4 Standardization

The assumption of linearity for the transfer function is often

accompanied with the requirement to standardize the proxy

records to a common scale before reconstruction. MoM,

OLS and PCReg require the proxy records to be standard-

ized to the same units, or otherwise the proxies with a higher

sample variance may dominate the result. The problems of

standardization boil down to how accurately can the scale of

a proxy record be altered. Standardization is generally

carried out by shifting and scaling each proxy record to have

zero mean and unit variance over a specific standardization

interval, using standard estimators for mean and variance.

As standardization is carried out using sample, rather than

population, values of the mean and standard deviations, the

standardization itself is sensitive to the noise in these esti-

mators. Finally, as the proxy time series are generally of

different lengths, the standardization interval is generally

short relative to the time interval spanned by the data set as

a whole. In such cases, standardization can introduce spu-

rious structure into the time series of the standard deviations

across the records; see Tingley (2012) for further discussion

and suggested solutions. When standardization is not

required, the accuracy of these estimator is irrelevant and,

therefore, the problems of standardization do not carry to

the methods not requiring standardization.

The original definition of RegEM by Schneider (2001)

includes mean and variance terms for each proxy record,

and therefore, standardization may not be required. LNA

has different mean and variance parameters for each proxy

record. However, the parameters for noise are common to a

proxy type and the authors suggest that the proxy records

are standardized for the model of common noise to be

reasonable. However, assigning each proxy as its own type

removes the need to standardize. Similar to LNA, BAR-

CAST has a set of coefficients for each proxy type and

Table 1 Summary of qualitative comparison of climate reconstruction methods

PaiCo MoM OLS PCReg RegEM LNA BARCAST

Transfer function Monotonic Linear Linear Linear Linear Linear Linear

Auto-correlated noise No No No Yes No Yes Yes

Multiresolution Yes No No No No Yes No

Standardization No Yes Yes Yes No No No
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defining each proxy record as its own proxy type renders

standardization unnecessary.

PaiCo does not require standardization as any shift and

scale operation can be considered to be contained in the

transfer function gk as long as the record is not flipped in

sign. The mean and variance of a record are not directly

used by PaiCo, and the method is invariant with respect to

arbitrary monotonic transformations of the proxy series.

3.2 Quantitative comparisons

In this section we compare the methods quantitatively in

two different pseudo-proxy scenarios.

For MoM, which is a CPS method, the uncalibrated

composite is produced by, for each year, calculating the

mean of the available standardized proxy values. For

PCReg, we estimate the number of significant principal

components from the eigenvalues (Mann et al. 2007). We

use total truncated least squares for RegEM and estimate the

truncation parameter with the same method as for PCReg.

For BARCAST, we set all the spatial locations to the same

coordinate, effectively removing the spatial component

from the model. We also experimented with the state-space

method by Lee et al (2008) with our implementation and

with an implementation received from the authors, but

failed to get either of them to converge. The method was

thus excluded. Implementations of all of the used methods

and Matlab source code for the experiments are available in

the Electronic Supplementary Material.

3.2.1 Demonstrating properties of PaiCo

We first demonstrate the properties of PaiCo in comparison

to other reconstruction methods using a set of idealized

experiments. A target time series is constructed from four

different parts concatenated in order: 100 point plateau at

height 10, 100 point linear trend from 10 to 0, 100 point

plateau at 0 and 200 point sinusoid with 2p
100

angular fre-

quency and unit amplitude. Figure 3A illustrates an exam-

ple target time series. A pseudo-proxy record is generated

by adding independent Gaussian noise with standard devi-

ation re to the target time series and normalizing them to

zero mean and unit variance. The calibration period is set to

the last 100 points, covering one complete cycle of the

sinusoid and leaving the rest as the reconstruction period. In

the experiments, the default setting has M = 20, where M is

the number of proxy records, re = 1 for all proxies, and the

proxies are linear. The default is varied to show the simi-

larities and differences in the methods. The experiments are

run 40 times for each setting to show the mean behavior of

each reconstruction method. Figure 3 depicts all of the

results. Details of the experiment, such as parameter values

for each of the methods, are available in the Supplementary

Online Material.

Figure 3A depicts results with M = 20 and re = .5. All

methods are very capable of reconstructing the target time

series with no significant differences. Figure 3B depicts the

relative error in recovering the plateau at 10 when the

number of proxy records is varied from 5 to 100. Many of

the linear methods behave similarly with PaiCo performing

equally well. OLS has trouble when the number of proxies

grows large, since the number of predicands is equal to the

number of samples. This could be remedied by applying

some kind of regularization. LNA performs best when

there are only few proxies. The relative performance of

both Bayesian methods decreases when the number of

proxies increases, but we believe this is a convergence

issue, rather than a weakness of the underlying methods.

As both have parameters for each proxy, adding proxies

makes convergence slower. During the iteration, both

methods came quite rapidly close to the plateu, but con-

vergence to it became increasingly slower with decreasing

distance. Therefore, we think the combination of the large

number of parameters to learn and the shape of the target

led to these convergence issues. We did moderate optimi-

zation and parameter tuning to try to speed up the con-

vergence. However, we kept the number of draws from the

posterior distribution fixed throughout the experiment due

to computational costs, which did not ensure convergence

in all cases. In a practical scenario, this issue could be

solved by adding more draws, constraining the sampling

and/or further tuning the initial parameter values.

Figure 3C depicts results with M = 20 and the common

re was varied from .1 to 3. For moderate to large re, LNA

performs better than the other methods, with MoM, PaiCo

and BARCAST performing slightly above average in these

experiments. PCReg, RegEM, and OLS are below average

in this case. However, with small re, PaiCo has a very large

error. PaiCo is based on the fact that the proxy records are

noisy and the noise is the essential ingredient that makes

the proxies disagree in the pairwise comparisons. If the

noise is very small or completely removed, the proxies

completely agree and PaiCo reduces to a ranking of the

target climate variables. The errors of LNA and RegEM

similarly increased in low noise scenarios.

To explore the sensitivity of the methods to the

assumption of common noise variance made by PaiCo, we

compare results under varying levels of departure from this

assumption. In these experiments, the noise variance for

each proxy is calculated from

ri
e ¼ exp d 2

i� 1

M � 1
� 1

� �� �

;

where i is the proxy index and d is the parameter that

controls the dispersion of noise variance among proxies.
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With d = 0, all proxies have the same noise variance,

re
i = 1, and the dispersion in the noise variances increase

with increasing d. Figure 3D illustrates the amount of noise

for each proxy as d varies from 0, i.e., flat, to 1, i.e., the

steepest curve. Figure 3E depicts the corresponding per-

formances of the reconstruction methods. The performance

of PaiCo degrades with increasing noise dispersion, and all

other methods perform better than PaiCo for d C .4. This

experiment was explicitly designed to highlight the limi-

tations of PaiCo, and in practice we would expect the range

of noise variances to be smaller than the d = .4 case. In

fact, we tested this by estimating the noise standard devi-

ation for each proxy in Kaufman et al. (2009) from the

residuals and calculating the coefficient of variation for

these estimated standard deviations. The coefficient of

variation is defined as the standard deviation divided by the

mean of a group of numbers, with larger values expressing

higher variation. The coefficient of variation for Kaufman

et al. (2009) is .13 while the coefficient of variation with

d = .4 is .25, and hence, the dispersion of noise variances

in Kaufman et al. (2009) is much smaller than in the case

d = .4. Therefore, PaiCo would most likely perform well

in that scenario. Notice that the decadal binning in Kauf-

man et al. (2009) has virtually no affect in this result, since

the mean and standard deviation of the estimated proxy

noise standard deviations are affected equally by the

averaging of the binning.

Last, we explore the sensitivity of the methods to the

linearity of the proxies. To produce non-linear proxies, we

use an arctan(lx) transfer function, where x is the input

value and l is the parameter controlling the amount of non-

linearity. Arctan is close to linear around zero and pro-

gressively more non-linear at values larger in magnitude

(Fig. 3F); we thus expect the performance of the linear

methods to suffer as l increases from .01 to .2. We apply

the transfer function individually to each proxy after add-

ing the noise but before they are normalized to zero mean

and unit variance. Figure 3G depicts the results for varying

levels of non-linearity. As expected, PaiCo is the only

method that does not suffer in performance as the proxies

A

B C

D E

F G

Fig. 3 Results of experiments

demonstrating the different

characteristics of reconstruction

methods. Example target time

series is depicted in A as red

dashed line with initial plateau.

A pseudo-proxy is generated by

adding independent Gaussian

noise with standard deviation

re. Unless otherwise stated,

there are 20 linear pseudo-

proxies with re = 1. A Mean

result of 40 runs for each

method with re = .5.

B Percentage error for each

reconstruction method,

averaged over the 100 point

plateau at the beginning of the

time series and over the 40 runs.

C As in B, but varying common

noise standard deviation.

D Noise standard deviation for

each proxy for varying levels of

dispersion. Each line depicts

single level of dispersion. E As

in B, but with varying levels of

dispersion of noise standard

deviation according to

D. F Transfer functions of

varying levels of non-linearity.

Calibration shows the values

during the calibration period.

G As in B, but with varying

levels of non-linearity according

to F
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become increasingly non-linear. The poor performance of

the linear methods is to be expected, as the transfer func-

tion is explicitly designed to be nearly linear over the range

of target values included in the calibration, but strongly

non-linear for larger values of the target. If the entire range

of the target variable were included in the calibration

interval, we would expect the performance of the linear

methods to improve, but to still not equal the performance

of PaiCo.

3.2.2 Auto-regressive pseudo-proxies

To test the performance of the methods in a more realistic

setting, we use the framework described in Tingley and

Huybers (2010b), in which a 500-point target time series is

generated as Gaussian noise with lag one auto-regressive

coefficient of .5. To increase the low frequency variability,

we add to this target time series a second time series with .9

lag one AR-coefficient. A pseudo-proxy is generated from

the target by adding varying amounts of white noise to it to

achieve a desired signal-to-noise (SNR) ratio. Depending

on the case, the pseudo-proxy is further transformed with a

random monotonic function. A number of these pseudo-

proxies are constructed to form a dataset of pseudo-proxy

records. Each of the methods are individually used with the

dataset and the root mean square error (RMSE), Pearson’s

product-moment correlation coefficient, Reduction in Error

(RE) and Coefficient of Efficiency (CE) are calculated.

RMSE is always divided by the standard deviation of the

target signal to arrive at comparable results.

We vary the number of proxy records (10, 20, 50, or

100), the signal-to-noise ratio (.4, .8, 1.2, 1.6, 2.0, 2.4, 2.8,

or 3.2) and the linearity of the proxies. For each non-linear

proxy record, a monotonic transfer function is generated by

first sampling two values, y1 and y2, uniformly at random

from [0,1]. We then space the values {0, y1, y2, 1},

assuming y1 B y2, evenly over the range of the noisy target

values. We use cubic interpolation to fit a function through

these points to transfer the noisy target values to the range

[0,1]. Cubic interpolation is guaranteed to create a function

that runs through the evenly spaced points {0, y1, y2, 1},

which means that the transfer functions will be monotonic.

We run the experiment 100 times for each combination of

parameter values to get a sense of the average behavior of

each of the methods. Figure 4 depicts all of the results.

In Fig. 4A, the average RMSE over 100 runs is shown

for each method and varying SNR values with 10 non-

linear pseudo-proxy records. Only PaiCo is able to come

close to the expected RMSE value, calculated as the

standard deviation of the sample mean estimator, with all

the linear methods having much higher values, particularly

for larger values of the SNR. When the noise dominates the

proxy data, i.e., SNR \ 1, the methods behave somewhat

similar with PaiCo still being slightly better. Figure 4B has

the same setting except that there are now 50 linear pseudo-

proxies. All of the linear methods achieve better perfor-

mance than before, to a varying degree. PaiCo, MoM and

BARCAST perform equally well when 1.2 B SNR B 2.2,

and better than the other methods. For small values of

SNR, all methods perform well, with BARCAST or LNA

having slightly smaller RMSE than the other methods. For

larger values of the SNR, the performance of BARCAST

decreases relative to the other methods—most likely due to

the convergence issues discussed above.

To give a more general sense of the the relative per-

formance of the methods, Fig. 4C plots the best method

according to four statistics for each combination of

parameter values. For a single set of parameters and a

single test statistic, the 100 runs result in 100 test statistic

values for each method. The method with the best average

test statistic value was chosen as the initial best method.

Then, each other method was compared to the initial best

method with a single-tail paired t test. A method was

included in the group of best methods if the averages of the

test statistics were indistinguishable at 5 % confidence

level. This way we can find which methods are better than

A B

C

Fig. 4 Results of experiments with autoregressive time series.

A Average root mean square (RMSE) values for each reconstruction

method using 10 non-linear pseudo-proxies. The estimated RMSE is

the standard deviation of the sample mean estimator without non-

linearities. RMSE’s are scaled with target standard deviation for

comparability. B Average RMSE values for each reconstruction

method using 50 linear pseudo-proxies. C Best methods with 5 %

confidence in different settings
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all the other methods, and among which supremacy can not

be statistically significantly determined. Note that multi-

plicity corrections need not be carried out here since we are

using the t-tests only as a tool to summarize the perfor-

mance of the methods in different settings.

Figure 4 shows a clear separation between the linear and

non-linear settings. PaiCo performs better than any of the

other methods when proxy records are non-linear, as

expected. When the pseudo-proxies are linear, BARCAST

is always among the best performing methods, with the

exception of low SNR cases for which LNA performs

better. However, PaiCo was unexpectedly also among the

best performing methods as measured by RMSE, RE and

CE when there are sufficiently many pseudo-proxy records

or the records have little noise. The performance of MoM

and PaiCo is often indistinguishable in the linear case. The

relative performance of the methods as measured by cor-

relation is similar to that measures by the RMSE, with the

exception that PaiCo is no longer one of the best methods.

BARCAST, which is by construction correct in all settings

where the proxies are linear, performs well in settings when

the proxies are noisy and few in number—provided they

are linear. In summary, PaiCo performs on par with MoM

when all proxy records are linear, and outperforms all

linear methods when the proxies records are non-linear.

3.3 Further quantitative properties of PaiCo

We calculate the average execution times of each of the

methods over all combinations of parameter values and 100

runs. PaiCo, RegEM, LNA and BARCAST are optimized

in several ways to reduce the computation time. BAR-

CAST was further modified to sample the complete spa-

tiotemporal field at once instead of sampling the spatial

field of each year separately in order to speed up its con-

vergence. The results are depicted in Fig. 5A. RegEM and

BARCAST have similar execution times, while LNA is

several times slower. The most costly part of LNA is the

sampling of the AR(2)-coefficients, which is done using

Metropolis-Hastings and requires several calculations of

the normal CDF at each iteration. However, this could be

alleviated by using the uniform distribution as a proposal

density.

We analyze the correctness of the uncertainty estimation

of Sect. 2.6 by calculating the coverage rates as described

by Li et al. (2010). A coverage rate is calculated by first

deciding on a nominal level. Then, for each time point, the

uncertainty estimation is used to find the upper and lower

bounds corresponding to the quantiles of the nominal level.

The corresponding actual coverage rate is then the fraction

of time points for which the target is within the upper and

lower bounds, i.e., is covered by the confidence intervals.

We calculate the coverage rates in the same settings as

before, but with 10 runs for each combination of parameter

values and we obtain 100 resamples in each case. Fig-

ure 5B depicts the difference between the actual coverage

and the nominal coverages. The uncertainty is slightly

underestimated with around 2.5 % error. However, the

errors are fairly small and, thus, the uncertainty estimation

seems to be quite accurate.

We also compare the power spectrum of PaiCo against

the power spectrum of the target using the method by

Welch (1967). Figure 5C depicts the average difference of

the power spectrums over different settings. When SNR is

small, the noise dominates the pseudo-proxy records and,

therefore, the low-frequency variability is underestimated

while high-frequency variability is overestimated. This is

expected from any method since, in high-noise cases, the

noise ‘‘overwrites’’ the information about the target in the

pseudo-proxies and, therefore, no method can recover

the low-frequency variability. When there is little noise, the

difference in power spectrums is much smaller. It seems

that the error of PaiCo can be decomposed to a slight

overestimation of the millennial to centennial scale vari-

ability and a slight underestimation of the centennial to

decadal scale variability. However, as shown in Fig. 4, the

errors in the reconstructions are among the smallest of any

reconstruction method in many of the tested settings.

As a final comparison, we also test the correctness of the

estimate of the standard deviation of the noise as shown in

A B

C D

Fig. 5 Statistics from the auto-regressive pseudo-proxy experiments

using PaiCo. A Average execution time for each method over all

settings. B The difference between actual coverage and nominal

coverage of uncertainty. Note that the uncertainties are point-wise.

C Average difference of the power spectrums of PaiCo and the target.

D Scatterplot of the target (true) standard deviation of the noise and

the standard deviation estimated by PaiCo
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Eq. (8). Figure 5D depicts as a scatterplot the relation

between the true and estimated standard deviations of

noise. The noise standard deviation estimates are generally

quite good, but feature a slight bias towards underesti-

mating the true values. However, as the one-to-one fit has

R2 = .93 and RMSE = .028, it is clear that the estimated

standard deviation is quite accurate, especially when the

noise is fairly small.

4 Proxy data

The study region is the area north of 60�N and between

50�W and 30�E. This area encompasses the northernmost

part of the Atlantic Ocean and the surrounding land areas,

which are also assumed to be influenced by the Atlantic

climate. We focus on the temperature of the Arctic Atlantic

during the past 2,000 years. The multiproxy data set is

composed of all (to our knowledge) publicly available

records that meet four predetermined and objective criteria.

First, each included proxy series must be used as a

temperature sensitive proxy in the peer reviewed literature.

This assures that each proxy record was objectively

assessed by experts in the field and its relation to temper-

ature was also justified. Furthermore, we used the recon-

structed temperature whenever available. For example, we

only used reconstructed temperatures for marine sediments,

as PaiCo is unable in its current state to handle assemblages

as proxy records. We also applied the processing steps

suggested by the original authors. For example, if it was

suggested that the record is dominated by human influence

during some time period, we excluded such parts of the

record. We, therefore, rely on the original authors to pro-

vide the most accurate proxy records.

Second, each included record must extend back to at

least 1500 AD. There are far more short, modern records

than long records, but by including only the longer records

we maintain the focus of the analysis on the last

2,000 years as a whole.

Third, we included only those records with at least one

well-dated age control every 500 years. As the method

considers the ages in records to be correct, controlling the

temporal quality becomes extremely important. This fairly

strict criterion ensures the chronology control is of high

quality and that we can be fairly certain about the age-

depth model. Many lake sediment records were not inclu-

ded because they did not meet this criterion. Notice that

varved (i.e., annually laminated) records are like trees, so

they essentially have a date for every year.

Fourth, all included records have on average at least one

observation every 50 years. We measure the resolution of a

record as the mean difference of sample ages, including

only those samples with ages between 0 and 2000 AD. We

required the average distance between mid-ages of samples

to be at most 50 years, so that those record covering the

entire 2,000 year feature at least 40 observations. The

resolution criterion was set to exclude low-resolution

proxies that have little effect on the overall result. Borehole

records and many lake sediment records were excluded on

the basis of this resolution criterion.

Figure 6 shows the locations of the collected proxy

records and their temporal structure. Details of each record

are listed in Table 2. The study area is likely richer in long,

high quality proxy records than any other region in the

Arctic. Furthermore, the whole study area is fairly evenly

covered without any significant clusters. The dataset is also

heterogeneous in proxy sources. The ice core records

constitute two fifths of the database, while the tree, marine

and lake proxies share the remaining portion quite equally.

We have also included a documentary record of sea ice

history in Iceland, and a single speleothem record from

Norway. While many of the records have previously been

Fig. 6 The locations of the proxy records and their temporal structure from 0 to 2000 AD. A continuous box on the right represents annual

resolution. Otherwise, each box represents the temporal boundaries of a single sample
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interpreted as linearly related to temperature, we note that

the the experiments in Sect. 3.2 suggest PaiCo is often

competitive with linear methods when applied to linear

proxies. Further, it is unlikely that assumption of linearity

holds for all proxy records used here. The dataset is

available in the Electronic Supplementary Material.

5 Results

Our Arctic Atlantic composite PaiCo reconstruction for

the last 200 years is shown as temperature anomalies

(reference period 1961–1990) in Fig. 7A, including noise

estimation from Eq. (8) and uncertainty from Sect. 2.6

with 1,000 resampled time series. The annually resolved

temperature reconstruction is significantly correlated

(r = .30 with p \ .001) with the instrumental surface air

temperature (SAT) time series, derived as an area-weigh-

ted mean from the HadCRUT3 global temperature data-

base (Brohan et al. 2006) from the meteorological stations

of the corresponding region. Statistical significance is

calculated by resampling 104 random time series with the

same AR(1) correlation coefficient (.45) as the recon-

struction, and calculating the fraction of random time

series that had equal or larger correlation with the

instrumental target than the reconstruction. The instru-

mental noise standard deviation for uncertainty estimation

is obtained by first calculating the variance of the mean

estimator for each year, and then calculating the square

root of the average of these variances. The uncertainties in

the following statements are reported in parenthesis as

either a percentage of ensemble members for which the

statement holds, or the mean and standard deviation of a

statistic calculated from the ensemble. The ensemble is a

collection of 104 bootstrapped reconstructions of the

temperature, calculated according to Sect. 2.6 on the

annual timescale.

Three distinct periods can be discovered in the observa-

tional record: strong regional warming over 1900–1940 and

1970–2000 separated by equally strong cooling from 1940 to

1970. The reconstruction generally reproduces these same

features, although annual inspection reveals some deviations

or even inverse correlations. The significant correlation

between reconstructed and measured air temperature

anomalies holds back with the onset of the instrumental

record, around 1850. Within the last 200 years, North

Atlantic temperatures were clearly below average between

1800 and 1900 (for 100 %, average of nineteenth century

\0), and mostly above the average during the last century

(for 90 %, average of 1920–2000[0).

In Fig. 7B, we show the outcome of the PaiCo recon-

struction for the entire 2,000 years, smoothed by calculat-

ing the average temperature for each decade. The decadal

temperature reconstruction is significantly correlated

(r = .84 with p \ .001) to the decadal instrumental data.

Among the strongest overall features in our composite

temperature reconstruction is a cooling from 1 to 2000 AD,

with least squares linear regression yielding a cooling trend

of -.33 �C/1,000 years (-.30 ± .09). Superimposed on

this cooling trend, another striking feature of the record is

the pronounced low-frequency climate variability. On the

basis of these clearly distinguishable climate fluctuations,

the last 2 ka of climate evolution in the studied Arctic

Atlantic domain can be subdivided into the Roman Warm

Period (RWP, until ca. 600 AD), the Dark Ages Cold

Period (DACP, ca 600 to 900 AD), the Medieval Climate

Anomaly (MCA, ca. 900 to 1200 AD), the Little Ice Age

(LIA, ca. 1500 to 1900 AD), and the Recent Warming

(RW, 1900 to present). The overall temperature variability

in our 2,000 year long record is 2.3 �C (95 % of values lie

within this range; ensemble has range 2.5 ± .4 �C), with

lowest values in the first part of the nineteenth century,

during the LIA, and peak maxima during the RWP around

400 AD, the early MCA at 1000 to 1150 AD, and in the

modern industrial period. The LIA shows clear evidence of

multidecadal climatic variability, such as the three suc-

cessive warm phases between 1400 and 1600 AD. In all,

the end of LIA (1600 to 1900 AD) appears to be climati-

cally more uniform than its initiation.

We compared the PaiCo Arctic Atlantic reconstruc-

tion (Fig. 7C) with another previously published Arctic

(Kaufman et al. 2009) and some widely used Northern

Hemisphere (Moberg et al. 2005; Mann et al. 2008) recon-

structions based on various combinations of proxy data and

differing statistical approaches. This comparison demon-

strates rather striking agreement between alternative esti-

mates over the past eight centuries. Prior to 1200 AD, the

reconstructions still all agree rather well in respect to the

overall temporal patterns, yet our new Arctic Atlantic record

shows much greater variability over time. Our reconstruction

is .29 �C warmer than the other records during the MCA

(.26 ± .19) and .56 �C warmer during the RWP (.56 ± .23).

The episode around 400 AD in our reconstruction is .63 �C

warmer than in any other reconstructions (.55 ± .28).

Figure 8 illustrates the most pronounced warming and

cooling trends, calculated by finding the window with the

steepest linear trend for each window size from 10 to 400,

with overlapping windows merged together. A persistent

and rapid multidecadal warming trend of 4.5 �C/100 years

(3.9 ± .9) took place in the onset of the modern (industrial)

times, in particular, from 1900 to 1940 AD, which is

consistent with other studies (see Sect. 6) Another sys-

tematic, rapid warming of 1.0 �C/100 years (.94 ± .23)

occurred from 700 to 800 AD. Conversely, the most sys-

tematic, fast and multidecadal cooling rate of -6.2 �C/

100 years (-5.4 ± 1.5) occurred in the termination of the
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RWP from 590 to 620 AD. Another steep cooling trend of

-1.4 �C/100 years (-1.2 ± .4) occurred between 400 and

490 AD. The longest cooling trend of -.31 �C/100 years

(-.28 ± .08) was seen between 990 and 1410 AD. The

millennial-scale average cooling trend is -.36 �C/

1,000 years (average slope of each 1,000 year window;

ensemble has -.32 ± .11).

6 Discussions and conclusions

We have presented a new method for reconstructing spa-

tially averaged climate variables from multiple proxy

sources. The key advantage of the method is the very

general assumption about transfer functions. In contrast to

all existing reconstruction methods, the presented method

only assumes the transfer functions are monotonic. This

allows the use of proxy records that display non-linear

behavior but for which the transform function is unknown

or for which linearity can not be assumed or tested. The

monotonicity assumption does not exclude records, since

all positive linear transfer functions are also monotonically

increasing and, therefore, any linear proxy record can also

be used.

The assumption of monotonicity instead of linearity

comes at a cost. Considering only the order of the values

for each pair of proxy values means that the information

about the magnitudes in a proxy record are ignored. If the

magnitudes in a proxy record are trustworthy information,

losing such information is not desired where high-quality

proxy data is scarce to begin with. If it is certain that the

transfer functions between proxy records and target climate

variable are linear, then linear methods should be used as

their power is greater in such cases as they utilize all of the

available information. However, the qualitative and quan-

titative comparisons to existing reconstruction methods

suggest that reconstruction resulting from PaiCo should be

comparable, according to standard metrics, with those

resulting from existing linear methods, even if the linear

assumption is adequate for all proxies.

Table 2 Details of used proxy records. Extent indicates the temporal span of a record in AD. The ‘Resolution’ is the average difference between

sample mid-ages within 0-2000 AD

ID Site �N �W Proxy type Measurement Extent Resolution Reference

1 Dye-3 65.18 -43.83 Ice core d18O 1–1978 Annual Vinther et al. (2010)

2 Renland 71.27 -26.73 Ice core d18O 2.5–1983 5.00 Vinther et al. (2008)

3 Crête 71.12 -37.32 Ice core d18O 553–1973 Annual Vinther et al. (2010)

4 GISP2 72.10 -38.08 Ice core d18O 818–1987 Annual Grootes and Stuiver (1997)

5 GRIP 72.58 -37.64 Ice core d18O 1–1979 Annual Vinther et al. (2010)

6 B16 73.94 -37.63 Ice core d18O 1,478–1992 Annual Schwager (1999)

7 NGRIP1 75.10 -42.32 Ice core d18O 0–1995 Annual Vinther et al. (2006)

8 B18 76.62 -36.40 Ice core d18O 871–1992 Annual Schwager (1999)

9 Longyearbyen 78.25 15.50 Ice core d18O 769–1997 Annual Divine et al. (2011)

10 B21 80.00 -41.14 Ice core d18O 1,397–1993 Annual Schwager (1999)

11 Austfonna 79.83 24.02 Ice core d18O 1,400–1998 Annual Isaksson et al. (2005)

12 P1003 63.76 5.26 Marine sediment d18O -5,931–1998 8.44 Sejrup et al. (2011)

13 MD99-2275 66.55 -17.37 Marine sediment Diatoms -2,549–2001 3.89 Jiang et al. (2005)

14 MD99-2275 66.55 -17.37 Marine sediment Alkenones -36–1949 19.53 Sicre et al. (2011)

15 MD95-2011 66.97 7.64 Marine sediment Diatoms -6,540–1440 28.04 Berner et al. (2011)

16 MD95-2011 66.97 7.64 Marine sediment Alkenones -4,076–1995 9.86 Calvo et al. (2002)

17 MSM5/5-712 78.92 6.77 Marine sediment Planktic foraminifers -94–2007 41.46 Spielhagen et al. (2011)

18 Iceland 64.77 -18.37 Documentary Ice cover 945–1935 30.00 Bergthórsson (1969)

19 Okshola cave 67.00 15.00 Speleothem d18O -5,565–1997 31.92 Linge et al. (2009)

20 Jämtland 63.50 15.50 Tree ring Maximum density 1,107–2007 Annual Gunnarson et al. (2010)

21 Torneträsk 68.26 19.60 Tree ring Maximum density 500–2004 Annual Grudd (2008)

22 Forfjorddalen 2 69.08 17.22 Tree ring Ring width 877–1994 Annual Kirchhefer (2001)

23 Finnish Lapland 69.00 25.00 Tree ring Ring width 0–2005 Annual Helama et al. (2010)

24 Lake Hampträsk 60.28 25.42 Lake sediment Chironomids 1,330–2000 14.57 Luoto et al. (2009)

25 Lake Nautajärvi 61.81 24.68 Lake sediment Organic matter 0–1800 Annual Ojala and Alenius (2005)

26 Lake Korttajärvi 62.33 25.68 Lake sediment X-ray density 0–1720 Annual Tiljander et al. (2003)

27 Lake Lehmilampi 63.62 29.10 Lake sediment Varve thickness 1–1800 Annual Haltia-Hovi et al. (2007)
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Another advantage of PaiCo is that it allows for the

inclusion of all proxy records on their original resolutions.

While not unique to PaiCo, the only other currently

available method that can do this is the linear method by Li

et al. (2010). The formulation of LNA could easily be used

to extend BARCAST to also have proxies of various res-

olutions. The task is more difficult for the other tested

methods.

These Bayesian techniques produce an ensemble of

equally likely climate histories conditional on the observa-

tions. The Bayesian ensemble has a different interpretation

than the ensemble of bootstrapped reconstructions used

here, as it provides a distribution of equally likely climate

histories conditional on a fixed data collection, whereas the

ensemble used here is based on bootstrapping the predictors.

We leave for future work a Bayesian implementation of

PaiCo.

PaiCo makes the assumption that the noise variance is

the same for all proxy records, meaning that each proxy is

assumed equally informative of the target climate variable.

The quantitative comparisons suggest that PaiCo allows

for small amount of dispersion of noise variance among

A

B

C

Fig. 7 Reconstructed temperature of the Arctic Atlantic. A Instru-

mental comparison of annual values between 1800 and 2000 AD with

noise and uncertainty estimates. Uncertainty 90 % is derived point-

wise from the percentiles of the ensemble of bootstrapped

reconstructions. B Decadal averages of maximum likelihood and

uncertainty estimates (as in A). C Comparison of the decadally

averaged PaiCo reconstruction with previous reconstructions of the

Arctic and Northern Hemisphere.

Fig. 8 Most pronounced warming and cooling trends, calculated by finding the window with the steepest linear trend for each window size from

10 to 400. We report the union of overlapping windows
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proxy records, which is to be expected in a real scenario.

Indeed, PaiCo performed at par with other methods at the

level of dispersion that was encountered by Kaufman et al.

(2009).

The millennial-scale average cooling trend in our

reconstruction is consistent with other proxy evidence

showing that summer temperatures across the Arctic

reached their maximum during the early Holocene, after

which the climate progressively cooled towards the present

(Wanner et al. 2008; Miller et al. 2010). The cooling can

be associated with the monotonic reduction in summer

insolation at high northern latitudes, driven by orbital

configurations. In a millennial perspective, a pattern of the

long term cooling has been revealed from the western

Arctic ice cores (Kotlyakov et al. 2004) as well as the

multi-proxy reconstruction of Arctic summer SAT (Kauf-

man et al. 2009). Even though the cooling trend magnitude

estimated for circum-Arctic summer SAT, on the order of

-.22� ± .06 �C/1,000 years (Kaufman et al. 2009), is

lower than the -.36 �C estimate for the Arctic Atlantic

region, there is a qualitative similarity between the two

reconstructions (Fig. 7). The insolation-driven cooling in

the North Atlantic realm was presumably enhanced by

numerous positive feedbacks (e.g., albedo, sea ice) that

amplified the forcing more strongly in the area than else-

where in the Arctic. In particular, a substantial sensitivity

to variations in sea ice extent provide a reasonable expla-

nation for this discrepancy.

Our study clearly demonstrates that the late-Holocene

climate was more variable and extreme in the North

Atlantic region than Arctic as a whole. This finding is in

accordance with Mann et al. (2009) who found Medieval

warmth and LIA cooling to be particularly pronounced in

the high-latitude North Atlantic. One way to measure the

relative MCA warmth is through the difference with the

LIA. However, in such comparison it is crucial which time

interval to choose to represent MCA and LIA (Goosse

et al. 2012). Frank et al. (2010) used the intervals

1601–1630 and 1071–1100 for LIA and MCA, respec-

tively, and found a relative hemispheric-mean MCA

warmth of .38 �C, whereas Goosse et al. (2012) found in

their simulations slightly smaller warmth of .33 �C using

the same periods, but greater warmth of .37 �C when using

a slightly different definition (i.e., 1620–1650) for the LIA.

Our study suggest that the relative warmth in the Arctic

Atlantic is more than double that of the previous studies:

.86 �C (.76 ± .28) when using the time periods of Frank

et al. (2010) and .91 �C (.81 ± .27) when using the time

period of Goosse et al. (2012) for LIA.

In our reconstruction, the MCA in total lasted approxi-

mately from 800 to 1200 AD (peak warming around 1000

AD), while LIA was exceptionally long in duration, from

1250 to 1900 AD, with the coolest phase between 1600 and

1900 AD. In literature, the duration of the MCA varies

greatly: 950–1100 AD (Mann et al. 2008), 950–1250 AD

(Mann et al. 2009; Goosse et al. 2012), 850–1350 AD

(Patterson et al. 2010), 800–1300 AD (Jungclaus 2009),

900–1350 AD (Graham et al. 2011), 950–1200 AD (Miller

et al. 2010), and 950–1400 AD (Diaz et al. 2011). According

to current understanding, the MCA was not a universally

warm epoch (see, however, Graham et al. 2011), although

much of the Arctic was warm during the Medieval times. In

contrast, the LIA, which most studies date between 1500 and

1850 AD, was most probably a global phenomenon (Mann

et al. 2009). In our proxy data, the coldest temperatures of

the LIA were experienced in first part of the nineteenth

century, in accordance with Overpeck et al. (1997).

The most pronounced warming phase in our recon-

struction occurred between 1900 and 1940, which is clearly

seen in the measured meteorological records as well. In the

instrumental record, positive SAT anomalies were largest

in the Arctic Atlantic region during this period (Wood and

Overland 2010). This early twentieth-century warming

(ETCW) has been subject to many studies, yet its reasons

still defies full explanation. Natural and anthropogenic

(land-use, aerosols) forcings are believed to have contrib-

uted to the ETCW (e.g., Delworth and Knutson 2000;

Bengtsson et al. 2004; Brönnimann 2009). According to

Chylek et al. (2009), the Arctic warming from 1900 to

1940 proceeded at a significantly faster rate than the

warming during the more recent decades and was highly

correlated with the Atlantic Multi-decadal Oscillation

(AMO) suggesting that the Arctic temperature variability is

highly linked to the Atlantic Ocean thermohaline circula-

tion at various temporal scales.
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Grudd H (2008) Torneträsk tree-ring width and density ad 500–2004:

a test of climatic sensitivity and a new 1500-year reconstruction

of north Fennoscandian summers. Clim Dyn 31:843–857. doi:

10.1007/s00382-007-0358-2

Gunnarson BE, Linderholm HW, Moberg A (2010) Improving a tree-

ring reconstruction from west-central Scandinavia: 900 years of

warm-season temperatures. Clim Dyn 36:97–108. doi:10.1007/

s00382-010-0783-5

Haltia-Hovi E, Saarinen T, Kukkonen M (2007) A 2000-year record

of solar forcing on varved lake sediment in eastern Finland. Quat

Sci Rev 26(5–6):678–689. doi:10.1016/j.quascirev.2006.11.005
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