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Abstract Existing multi-proxy climate reconstruction
methods assume the suitably transformed proxy time series
are linearly related to the target climate variable, which is
likely a simplifying assumption for many proxy records.
Furthermore, with a single exception, these methods face
problems with varying temporal resolutions of the proxy
data. Here we introduce a new reconstruction method that
uses the ordering of all pairs of proxy observations within
each record to arrive at a consensus time series that best
agrees with all proxy records. The resulting unitless com-
posite time series is subsequently calibrated to the instru-
mental record to provide an estimate of past climate. By
considering only pairwise comparisons, this method, which
we call PaiCo, facilitates the inclusion of records with
differing temporal resolutions, and relaxes the assumption
of linearity to the more general assumption of a mono-
tonically increasing relationship between each proxy series
and the target climate variable. We apply PaiCo to a newly
assembled collection of high-quality proxy data to recon-
struct the mean temperature of the Northernmost Atlantic
region, which we call Arctic Atlantic, over the last
2,000 years. The Arctic Atlantic is a dynamically impor-
tant region known to feature substantial temperature vari-
ability over recent millennia, and PaiCo allows for a more
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thorough investigation of the Arctic Atlantic regional cli-
mate as we include a diverse array of terrestrial and marine
proxies with annual to multidecadal temporal resolutions.
Comparisons of the PaiCo reconstruction to recent recon-
structions covering larger areas indicate greater climatic
variability in the Arctic Atlantic than for the Arctic as a
whole. The Arctic Atlantic reconstruction features tem-
peratures during the Roman Warm Period and Medieval
Climate Anomaly that are comparable or even warmer than
those of the twentieth century, and coldest temperatures in
the middle of the nineteenth century, just prior to the onset
of the recent warming trend.
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1 Introduction

Climate reconstructions aim to elucidate the variability of
the climate in the past by inferring climate variables during
the era of interest (Bradley et al. 2003). The reconstructed
variables help in painting a picture of the past and pro-
viding a context for interpreting recent observations and
future predictions. To this end, accurate reconstructions are
vital, which necessitates that the assumptions made by a
particular reconstruction method are appropriate for the
included proxy observations.

All existing multi-proxy reconstruction methods assume
that the relation between a proxy and the target climate
variable is linear (Tingley et al. 2012). The assumption is
often reasonable: many proxy records are known to be
linearly related to, for example, temperature and thus
reconstruction methods that make the assumption perform
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well in many cases. The linearity assumption is also con-
venient: much is known about linear methods (Bingham
and Fry 2010) and it is simple to test if the assumption
holds even approximately. However, it has been argued
that some proxies, while appearing to be linear during the
calibration period, exhibit non-linear behavior outside of
the range of values in the calibration period (Anchukaitis
et al. 2012; Mann et al. 2012a, b). There are also cases
where linear correlation is weak (Ojala and Alenius 2005)
or cannot be directly tested (Tiljander et al. 2003) even if
the proxy is known to be strongly influenced by the target
climate variable.

Linear methods can be used with non-linear proxies if it
is possible to invert the known non-linear relation and
transform the original record to a new record that is linearly
related to the target climate variable. Non-linear methods
have been developed for specific proxy types to reconstruct
the target climate variable (Evans et al. 2006; McKay et al.
2008; Pflaumann et al. 1996; Tolwinski-Ward et al. 2011),
effectively making the mentioned inverse transformation.
However, if proxies are used from multiple sources, finding
suitable inverse transformations for each may be difficult or
even impossible. For example, hydrological proxies
(Maidment 1993) often display non-linear or even thres-
holding type relations with precipitation, as runoff and
sediment deposition only occur for sufficiently high
streamflow, which is in turn a non-linear function of pre-
cipitation. Proxies that exhibit such threshholding behavior
cannot be completely inverse transformed to linearity, since
the exact value of a sample above (or below) the threshold is
unknown. However, such samples still carry information
since their values are known to be higher (or lower) than
any other value that is below (or above) the threshold. If the
linearity of a record cannot be tested, assumed or obtained
by a transformation, the record would generally be exclu-
ded from a multi-proxy reconstruction with current recon-
struction methods. Furthermore, even if a proxy seems
linear and is assumed as such, it may exhibit a non-lin-
ear response to values of the climate variable outside of
those contained within the calibration interval.

Another common assumption for all but one (the
exception is Li et al. 2010) of the existing multi-proxy
reconstruction methods is that they assume the same tem-
poral resolution for all proxy records, while in practice
different proxy records generally have different temporal
resolutions. For example, tree ring records are annually
resolved while lake and marine sediments often have a
much lower resolution. Some reconstructions have used
interpolation to achieve a common resolution (Christiansen
and Ljungqvist 2011; Mann et al. 2008; Moberg et al.
2005; Sundqvist et al. 2010). However, interpolation arti-
ficially increases the influence of the interpolated records,
changes their interpretation, invalidates the assumptions
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made by the reconstruction methods, and should thus be
avoided. Another approach is to only include records that
have the same resolution, but then many high-quality
records are excluded.

We present here a novel Composite-Plus-Scale (CPS)
method, PaiCo, so called as it relies on Pairwise Compari-
sons. PaiCo is based on comparing all pairs of sample
values within each proxy record and producing a time series
that best matches all of the pairwise comparisons. The
reconstructed time series is unitless, so must subsequently
scaled to match the units of the target climate variable, and
represents the spatial average of the target climate variable
over the geographical area the proxy records cover.

The pairwise comparisons framework allows us to
assume that the transfer functions between proxy records
and the climate variable are monotonically increasing,
which is a weaker assumption than assuming they are linear.
Specifically, any linear transfer function is also monotonic,
but the opposite does not hold. PaiCo has other favorable
properties in that proxy records need not share common
temporal resolution (Li et al. 2010); standardization of
records is not required (Tingley 2012); and missing values
are handled intrinsically. While PaiCo discards information
about the magnitudes of the proxy values, it also allows
more information to enter into a reconstruction as a greater
variety of proxy records can be included. Furthermore, we
show in a quantitative analysis that PaiCo performs at par
with the best linear methods in many linear cases and
supersedes all existing methods in non-linear cases.

We apply PaiCo to a multi proxy data set from the north-
ernmost region of the Atlantic. The study area is bounded to
60°-90°N and 50°W-30°E, and we call this area the Arctic
Atlantic. Studies of North Atlantic climate variability have
become a central focal point of climate research during recent
decades. North Atlantic climate variability arises from diverse
sources over broad spatial and temporal scales; several natural
processes are working in parallel, sometimes enhancing and
sometimes counteracting each other (Marshall et al. 2001).
Climate at high northern latitudes is greatly affected by
atmospheric pressure patterns, while oceanic processes of the
North Atlantic also affect the regional as well as the global
climate. Furthermore, a number of papers have argued that the
capacity of sea ice to affect climate both through albedo and
air-sea heat exchange and also the ability of sea ice to rapidly
change its distribution make this a good candidate mechanism
for driving abrupt climate changes in the North Atlantic and
perhaps worldwide (Denton et al. 2005; Gildor and Tziper-
man 2003; Li et al. 2005; Kaspi et al. 2004; Timmermann
et al. 2005; Wunsch 2006).

During the past few millennia, climate development in
the North Atlantic sector of the Arctic was punctuated by
centennial-scale warmer and colder episodes, of which the
most well-known are the Little Ice Age (LIA about
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AD1500-1900), the Medieval Climate Anomaly (MCA
about AD900-1200), the Dark Ages Cold Period (DACP
about BC100 to AD700) and the Roman Warm Period
(RWP about BC900-100; Bradley et al. 2003; Korhola
et al. 2000; Lamb 1995; McDermott et al. 2001; Moberg
et al. 2005; O’Brien et al. 1995; Wang et al. 2005).
Although there has been much discussion about the mag-
nitude and geographical extent of these events, it never-
theless seems that the most consistent records of these
classic climate periods come just from the North Atlantic
sector of the Arctic (Bradley et al. 2003; Miller et al.
2010). The climate of the Arctic Atlantic is highly variable,
but current reconstructions do not agree on the relative
magnitudes of different cold and warm spells over the last
two millennia. It is therefore a region well suited to further
analysis using PaiCo, as it allows for the inclusion of a
broader array of proxy types and thus provides a more
complete description of climate variability in this region.
The analysis using PaiCo focuses on the regional mean
temperature, and we defer to future work the study of
spatial patterns of the variability within the Arctic Atlantic.

We present the PaiCo method and associated theoretical
properties in Sect. 2. The qualitative and quantitative prop-
erties of PaiCo are compared to existing methods in Sect. 3.
Section 4 introduces the proxy data from the Arctic Atlantic
and Sect. 5 presents the results of applying PaiCo to this
multiproxy data set. Section 6 closes the paper with final
discussion of both the methodology and our applied results.

2 Method
2.1 Model

Let f be a column vector that represents the time series of
the target climate variable to be reconstructed. The values in
f will represent the average of the climate variable over the
geographical area the proxy records cover with equal
weight for all proxy records. Hence, the reconstruction will
not have a spatial component. For simplicity, we will focus
on reconstructing the annual average temperature, but any
other climate variable could be reconstructed as long as the
proxy records are causally affected by that climate variable.

Let P* be the vector of random variables corresponding
to the kth proxy record. Each proxy record is a single time
series, such as the d'®0 measurement from an ice core or a
tree ring width chronology. We model the relation between
the target climate variable and the proxy record values by

Pl =g (XL(f + €)), (1)

where P represents the random variable corresponding to
the ith sample value of proxy record k, e is a vector of

noise terms, and g* is the transfer function for proxy k. We
use the convention that the subscript indexes a variable and
- denotes all elements of the corresponding index. For
example, X;; is the value of the matrix X at row i and
column j. The row vector Xf-‘_ represents the linear combi-
nation of the noisy terms f + e that the proxy sample i
supports, i.e., Xf accounts for the averaging behavior of
the proxy record. The selection and averaging matrices X*
are discussed in Sect. 2.3. The noise terms e* are assumed
to follow a mean-zero multivariate normal distribution with
covariance matrix X. While other noise structures are
possible, multivariate normal variables result in a tractable
maximization problem (see Sect. 2.4), and are likely a
reasonable assumption for most proxies.

The transfer function g“ models the unit transformation
from the linearly combined noisy climate variable to the
proxy record. Existing reconstruction methods assume that
the transfer function g* is linear, i.e., g*(x) = o*(x) + f*(x)
for some of, f¢ € R, with appropriate scaling for the noise
covariance structure X, and many additionally assuming
ok > 0. For example, the linear model P* = o*f; + ¥ + ¢;
can be expressed in Eq. (1) with g(x) = o«*(x) + f*(x) and
noise covariance X /ot.

The major assumption underpinning PaiCo is that there
is a monotonically increasing function relating the proxies
to the temporally averaged climate variables. That is, for
any x and y, it holds that x < y < g"(x) < g*(y). Assuming
only monotonically increasing transfer functions corre-
sponds to saying that an increase in the value of a proxy
record corresponds to an increase in the climate variable,
but the amount of change in the climate variable is
unknown. If the transfer function was assumed linear,
a unit increase in the proxy record would necessarily cor-
respond to an increase of of in the climate variable.
Therefore, we do not assume as much about the relation
between a proxy record and the target climate variable as
existing methods do, but still assume the proxies are
informative about the underlying climate variable.
PaiCo thus allows for the inclusion of proxies that are
linear in the climate over the calibration interval, but that
may feature a different response to climate values that are
outside of the range of the calibration interval values.

Figure 1 illustrates examples of both linear and mono-
tonically increasing transfer functions. A linear transfer
function is a straight line while a monotonically increasing
transfer function is any function that increases when the
input value increases. All linear transfer functions are also
monotonically increasing assuming the coefficient o is
positive. Note that if the transfer function is monotonically
decreasing, the proxy record should be multiplied by —1,
i.e., flipped upside down. In the remainder of the paper, we

@ Springer



2042

S. Hanhijédrvi et al.

Proxy record 4
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Fig. 1 Examples of linear (red) and monotonic (blue) functions. Note
that the linear functions are also monotonic, but not vice versa

use only the word monotonic when we mean monotoni-
cally increasing, unless otherwise stated.

Let p* be the realization of P in Eq. (1), 1., p~ is the ith
observed value of the proxy record k. Instead of using the
actual values of the realizations p5, we only compare which
is greater of p~and pj’»‘ for all distinct pairs of i and j. These
pairwise comparisons disregard the magnitudes of the
values in a proxy record by only considering their pairwise
orderings. The effect is that we can ignore a monotonic
transfer function gk, since

P{ <P}
= g (XL(F +eb)) <g"(X(f +¢)) (2)
& XE(F +ef) <XE(f +¢).

Note that comparisons are made only within a proxy
record, and not between proxies, thus allowing heteroge-
neous proxies with different forward models g* and tem-
poral properties X* to be combined. The error term e*
makes this comparison a Bernoulli random variable, with
the difference Xiﬁf — X;ff determining the probability of
Pé" < P]]? and, likewise, the probability of Pf»‘ > PJI»‘.

Using the model of Eq. (1) in Eq. (2) allows us to dis-
regard the details of how the climate variable is transferred
to a proxy, as long as we can assume the transfer function
is both stationary and monotonically increasing. If a proxy
truly tracks the changes of the climate variable, increases
and decreases in the variable are reflected in similar
behavior in the proxy. This allows us to use proxies that are
known to be strongly related to the target climate variable
but for which linearity can not be assumed or tested. There
are trade-offs in making the less restrictive assumption of
monotonicity, which we explore in Sect. 3.

Stationarity, in some shape or form, is also a necessary
requirement, as otherwise we could not infer anything
about the past. Stationarity in this model means that the
relation between the climate variable and proxy remains
unchanged throughout time.

Another effect of pairwise comparisons is that we do not
require the proxies to be standardized before use as any
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scaling with a positive coefficient and any shifting can be
considered to be contained in the transfer function gk.
Therefore, such operations make no difference with respect
to the model.

Thurstone (1927) was the first to describe a method
based on pairwise comparisons for applications in psyc-
honometrics, and more recent developments can be found
in Stern (1990).

2.2 Intuition behind pairwise comparisons

We develop the intuition behind pairwise comparisons by
first considering a special case of the general formalism of
Eq. (2). Let each proxy record and the target f have the
same temporal structure and let the transfer functions
be the identity, i.e., gk(x) = x for all k. In this case, each
value of a proxy record is simply a noisy version of the
corresponding target value. For a single pair of time
points, the agreement between the proxy records over the
ordering of the two corresponding observations within
each proxy series is directly related to the difference
between the target values. The more proxy time series
feature a higher value for the first time point, the greater
the value of the target at the first time point as compared
to the second. Similarly, if the proxy series are about
equally split between featuring the larger value at the first
and second time points, then there is likely not much
difference between the corresponding target values.
Assuming Gaussian noise, we can use the amount of proxy
agreement to calculate the relative difference between the
pair of target values.

We now develop the mathematical formalism for the
simple case, with g the identity and the proxies and climate
having the same resolution. The only information we use is
the collection of pairwise comparisons pr < p]]? for all
distinct pairs (i, j) of every proxy record k. In the simplistic
setting above, Pf-‘ =P, =1, + e;. As the values pi-‘ are
realizations of P¥, the pairwise comparisons pf < pj]«‘ are
realizations of Pﬁ‘ < Pj'?, and in this simple case, they are
also realizations of P; < P;. Because of this 0, the proba-
bility that P; <P, can be estimated with 0 =

1 M
M Lak=1
returns 1 when the inner test is true and O otherwise. The

d(p} <pj), where 6(-) is the indicator function that

value @,-j is the fraction of proxy records for which the
proxy value i was less than the proxy value j, i.e., it is a
measure of agreement between proxies. As Pr(P; <P)) =
Pr(f; + e¢; <f; + e, the value (9,7 is also an estimate of the
probability 0 = Pr(f; + e; <f; + e;). We have already
assumed e is multivariate normal with zero mean
and covariance X. Let us further assume the covariance
matrix is diagonal, £ = o21. Then,
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=Pr(fi +e<f;+e)

—Pr(e, ej<fj—f,-)
= ®(f; — £,,0,20%)
where @(-, i, 6%) is the Gaussian cumulative distribution

function with mean u and variance ¢”. Inverting the last
equality gives a relative value for the difference f; — f;,

1
V2062
Therefore, the value of 0,; is a measure of the difference

between f; and f;. The larger the difference f; — f;, the
closer 0; is to 1 and the more we expect to see pr< pj'»‘. If

——(f; — £;) = 7'(0;,0,1).

the difference is small, ?),:,- ~ .5 and the fraction of p; < p}
is roughly equal to the fraction of p}‘ < p¥. In other words,
the fraction of proxies with pf < p}‘ gives information
about the difference f; — f;. This result is the main idea
underpinning PaiCo.

The intuition behind using pairwise comparisons on the
proxy scale to infer difference in the target climate is illus-
trated in Fig. 2. The more general case, presented in Sect. 2.4,
is more involved due to the averaging of the climate inherent

to many proxies that is modeled using the matrices X*.
2.3 Temporal resolution and change of support

Proxy records often have different temporal characteris-
tics. Ice core records are often annually resolved, i.e.,
there is a sample for every year, and have annual support,
i.e., only the climate of the respective year affects the
corresponding proxy observation. Lake sediment records,
on the other hand, are often variably resolved since the
time between samples can be anything from a few years
to even several centuries, while the support of each
sample often spans several years. Furthermore, quite often
the target f is expected to be annually resolved with an
annual support. This problem of inferring values for
f from data that have different temporal characteristics
is an example of a change-of-support problem (Tingley
et al. 2012).

The linear combinations X indicate the values of f
that affect the value of sample i of proxy k. The vectors Xff
are assumed known with the requirement that the elements
have to sum to 1, Xf.‘,[l7 e 1]T
Xff , let us assume f is to be annually resolved with annual
support. Consider a proxy record, k = 1, with annual res-

= 1. To give an example of

olution and annual support. Each vector X}_ then consist of
zeros, with a single entry of 1 such that X} (f + e')picks out
the noisy value f, + e/ for the year I corresponding to the
proxy observation. Consider next another proxy record,
k = 2, with biannual support and 5-year resolution. Then

A
@ [T
2
©
g
£
(0]
2
t, t
Time
z|C Pr(P <Py
-
e
<
a
£, 0
'g E Pr(P,<P,) F .
3 P:<P:
8 P> p
a
0 f-f, Count

Fig. 2 Illustration of pairwise comparisons, where proxy values are
simply noisy versions of the target, i.e., proxies have the same
temporal structure as the target and the transfer functions are
g“(x) = x for all k so that P¥ = P; = f; + e;. A Probability density of
the target plus noise through time, with darker colors indicating
regions of higher probability. The black line is the target without
noise. The time points t; correspond to the values target values f;.
B Probability densities for proxy values, represented by random
variables P, = f; + e, P, = f, + e, and P; = f5 + e5. Notice that
the target values determine how much the densities of the proxy
values overlap. For a pair of time points, the overlap causes
disagreement when comparing observed proxy values, and the
amount of disagreement over all proxies is directly related to the
distance of the target values. C Probability of P, being smaller than
P;. Since f, and f; are close, the probability Pr(P; < P,) is close to .5,
which means the disagreement among proxies will be large. D The
observed proxy values pf are realizations of P¥ = P, and therefore,
the pairwise comparisons p% < p% are realizations of comparisons
P, < P,ef) 4+ e; <f, + e;. The fraction of p]f < p’z‘ among M proxy
records gives an estimate of Pr(P; < P,) = Pr(f; + e; <f, + e;).
E The probability of P3 being smaller than P,. Now that f5 and f, are
far apart, the probability Pr(P; < P,) is close to 1 and the proxies will
mostly agree on the pairwise order of the values. F Similarly to D,
fraction of p’3c < plﬁ gives an estimate of Pr(P;<P,) =
Pr(f; + e3 <f; + &)

Xi =[,1,0,0,0,0,0,0---,0] and X3 =][0,0,0,0,0,
1,1,0,---,0], and hence, Xj(f+e*)= 1(f;+e?)+
Lt +e3) and X5 (F+e€*) =1(fs+e})+ L(fs+e?). In
other words, the term X! (f + *) in Eq. (1) calculates the
weighted average of the noisy values f + e over the time
(e.g., years) the sample i of proxy k supports. Resolution
and support are both encoded in X;‘, with, roughly speaking,
sample time determining the position of the non-zero val-
ues in Xff and support determining how many consecutive
values there are. These linear combinations are similar to
those discussed by Li et al. (2010) and Tingley et al.
(2012).
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There are some special cases we need to consider. Some
proxy records, including many tree ring chronologies, may
only have seasonal support, while the target climate vari-
able is often required to be annually resolved with annual
support. In such case, the model in Eq. (1) is incorrect, since
Xk (f + e), for any definition of X!, is an annual average
over years while pf only reflects the seasonal climate. To fix
this, there are several possibilities. One option is to make
the target f have the same minimum support as the proxy
records. For example, f could have seasonal or monthly
resolution and support, and Xff can then be defined as
before. The second solution is to only include records that
have the same seasonal support, and then inferring the
target at this common same seasonal support. This option
has been used before in climate reconstructions that target a
specific season (e.g., Kaufman et al. 2009). A final option is
to ignore seasonality and assume that all proxy observa-
tions have at least annual support. In other words, the
growth season support of a tree ring chronology is ignored
and it is assumed to be sensitive to annual climate varia-
tions (e.g., Ljungqvist 2010; Moberg et al. 2005).

Another special case to consider is the averaging
behavior of some proxy records. For example, let us con-
sider using an ice core record of 5-year averages of d'*0 to
reconstruct annually resolved and supported temperature.
In this case, the model

P} = Xig (f +e) (3)

might be more reasonable than the one in Eq. (1), since P!
now expresses, with a suitable Xff , the 5-year average of the
transformed noisy temperature. The term g“(f + e*) applies
the function g* separately to each element of the input
vector. With Eq. (3), the transfer function is implicitly
assumed linear, since only if g* is linear does it hold that

Xig"(f +e') <Xig'(f + ")
XKL (F + ) <g“ (X} (f + ¢)) (4)
X (f +€) <X (f+e),

and PaiCo requires the inequalities in Eq. (4) to hold. This
does not violate the assumptions of the method, but gk is
assumed linear instead of monotonic for this proxy.

Finally, we discuss pollen records, but the discussion
applies to other sediment proxies, such as chironomids.
First note that we will not use the observed abundances of
such a proxy but the published reconstruction calculated
from the abundances. For example, we will later use the
reconstructed temperature from Luoto et al. (2009) and not
the observed chironomid abundances.

Each year, pollen is deposited in the sediment and these
annual depositions of pollen reflect the climate over a span
of several preceding years. If we were able to sample a
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sediment core precisely at annual scale, we would have an
annually resolved proxy and each sample would support

several years. Let Z]]f express the support of each year of

deposition, such that Zjlf (f + eX) expresses the noisy climate
averaged over the years the single year j of deposition
supports. However, sediment cores can often only be sam-
pled at a much coarser scale, and each sample is an average
over the deposition included in the sample. An appropriate
model for a sediment proxy value would thus be

Pl = Yigh(Z!(f +€Y)), (5)

where Yff expresses how the deposition of each year was
averaged to produce the sample i of proxy k. Because of the
averaging Yf7 the transfer function g* is again implicitly
assumed linear, since only then do the inequalities in
Eq. (4) hold. Fortunately, many of the published pollen
reconstructions are already in degrees Celsius, which
means gk is linear by definition. With linear gk, the
model in Eq. (5) is equivalent to

Pl =g (Y[Z!(f +¢"))

with respect to the inequalities Eq. (4). To use such a
record, both Yf_ and Z* need to be determined to find out
the linear combinations X! = Y*Z*. In reality, the aver-
aging linear combinations Yff can be derived from the
sample limits, which in turn can be calculated fairly easily
as shown in Sect. 2.8. However, determining the support
matrices ZF is outside of the scope of this work and,
therefore, we will assume them to be the identity matrices
in the analysis of Arctic Atlantic records.

2.4 Likelihood of pairwise comparisons

We now develop the mathematical formalism in the gen-
eral case of Eq. (2), and describe our approach to maxi-
mizing the likelihood. Using the model in Eq. (1), we
define the likelihood by comparing all pairs of observed
proxy values pf for each proxy record:

Pr({p;}If)

ﬁ [T Prei<Pip)
k=1

i,j:p} <pf

Pr(XE(f + ) <XA(F + €)) (6)

=

»
Il
o)

=
A
)

—-

O((X]. — X[, 0, 07),

s Vi
K
P;

k

Lijpt

=
A

where M is the number proxy records, ®(x,0,0?) is the
value of the cumulative distribution function of a Gaussian
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distribution with 0 mean and ¢ variance, and
a}i = (Xj" - Xf)Z(XJI‘, — X*)T, where X is the covariance
matrix of the noise terms. Note that X is common to all
proxies, which means that the noise variance is equal for
each proxy. Therefore, we assume that each proxy, prior to
lossy averaging and one-to-one transform of g¥, is equally
informative of the climate. We explore the effects of
departures from this assumption in Sect. 3.2.

The likelihood in Eq. (6) is a variant of Thurstonian
scaling (Lipovetsky and Conklin 2004). We present here
the iteration formulas to find the maximum likelihood
solution to Eq. (6). First, let us simplify the likelihood by

defining a matrix A, which stacks the vectors ((Xj’i —
k k I\NT =%/ yk k ..
X)Z(X — X)) 2 (X — X;) for all k and {(i,j) |
pff<p]’f} in to a single matrix with height S>3, [{(i,j) |
p; <p}}| and width Ifi. Notice that the multiplier before the
last (Xf — X¥) is a scalar. We also add a regularization
term for f, since the columns of A are linearly dependent.
We regularize the calculations with the multivariate
Gaussian distribution with zero mean and covariance

matrix Xy. The objective function to maximize can then be
expressed as

F(f) = [ ©(A.£,0,1)¢(F,0, %), (7)

where s is the row index of A that runs through all of the
rows of A.

The idea in the optimization is to start from a close
enough solution and use Newton—-Raphson method
(Bonnans 2006) to find the location where the gradient of
the log-objective is zero on all dimensions. The iteration
from solution f* to £ is carried out by solving the linear
system

Hp (£) (£77! — £) = —V;F(£9),

where Hg(f) is the Hessian matrix of F. The gradient of F
has the form

O (AL 1
F(f*) = E — A, — >
V() — D(Af) 0
and the Hessian is

A f A f9)?
Hy(f) = — Z <i§/—\f§ A £+ i((Af;z> AlA,

-1
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where ¢(x) and @(x) are the probability density and
cumulative distribution function, respectively, of a
Gaussian random variable with zero mean and unit
variance. However, if the Hessian matrix Hg(f?) is
singular and the regularization X, is weak, the iteration

may fail to find a reasonable solution. To solve this, we use
the Levenberg—Marguardt-style damping (Marquardt 1963)

(Hp(f) + Zdiag((Hp(£9)) (£ — £9) = =V F (),

where diag(+) is the diagonal of the given matrix with other
elements set to 0, and A is the damping factor. With small
A, the iteration is close to the Newton—Raphson method,
and with large A, the method becomes close to the gradient
descent method.

As initial step, we use the heuristic starting point f =

Do AST,7 which produces a time series roughly similar to the
final result. We carry out the iteration until the change in
F(f") between successive iterations is sufficiently small or a
maximum number of iterations is achieved. An imple-
mentation of the method is available in the Electronic
Supplementary Material.

When the iteration has converged, the vector f* contains
the maximum likelihood estimate f,; of f. The estimate £,
does not have units and needs to be calibrated to instru-
mental data. Any of the calibration methods used by other
CPS methods could be used. Even the more involved
Bayesian methods (Li et al. 2010; Tingley and Huybers
2010a) could be used with f,,; as the single proxy record.
For simplicity, we will use the method-of-moments for
calibration, where the estimate fml is shifted and scaled
such that it will have the same mean and variance as the
instrumental data over the calibration period. The cali-

brated time series is later denoted as fml. Note that the

estimate f,,; is noisy since the number of proxy records is
limited. The noise in instrumental data together with the
noisy estimate creates the regression dilution problem
(Ammann et al. 2010) as faced by other reconstruction
methods. We chose to calibrate with the method-of-

moments instead of regressing f'mz on the instrumental data,
since the former is slightly better at dealing with the
regression dilution problem even though the latter is, in
theory, optimal with respect to prediction error. Assuming
ii.d noise in the instrumental data, the dilution problem

could be alleviated for regression by smoothing both f'ml
and the instrumental data, but it would have been difficult
to choose the type and amount of smoothing without
resorting to heuristics. Hence, we chose method-of-
moments.

2.5 Estimating noise variance

The choice of distribution for noise e* in Eq. (1) is due to
convenience: the linear combination of multivariate
Gaussian variables is also a Gaussian variable. If other
distributions are used, the iteration formulas for the max-
imum likelihood solution need to be updated accordingly.
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We have defined the mean of the noise to be zero in Eq.
(6). This requirement is not necessary, as any shift of all
elements of f with a common scalar would not affect the
likelihood function, and therefore, we chose to use O for
simplicity. However, the covariance structure X in Eq. (6)
can be defined freely. One could, for instance, make the
noise terms independent with a common variance, which
would correspond to a diagonal covariance matrix with a
constant value on the diagonal. Furthermore, auto-corre-
lated noise can also be represented in the covariance
matrix, but the amount of auto-correlation has to be defined
by the user.

The sample variance of the maximum likelihood esti-

mate f,,,, is related to the sample variance of the target
values f and the magnitude of noise, . Let us decompose
the noise covariance matrix to noise variance o2 and cor-
relation R, i.e., X = azR. The CDFs in Eq. (6) can then be
written as

)

= o (X} - XDRE - X)) - x) o).

k k
O((XE — XE)F,0

When we calculate the solution to Eq. (6) with the linear
. . Ty—1

combinations ((Xjk - Xf)R(Xf - xX5h 2(Xf - X5, we

can see that the resulting maximum likelihood estimate f,,,

is actually an estimate of (;L The sample variance of

~ ~ 9 n

£, var[f] = 1500 (Fa); — 1300 (F),)”, will express
the relation in magnitudes of the target signal f and noise e,
i.e., the signal-to-noise ratio (SNR). When the maximum

likelihood estimate fml is calibrated to instrumental data to

produce f,,;, the noise variance can be estimated by

2 var[fcal}

Og =—5—. (8)
var(f,,]

Therefore, we can very easily estimate the noise variance

from the uncalibrated and calibrated estimators. However,

very strong regularization may decrease varlf,;] and,
therefore, increase the estimate G7.

2.6 Estimating uncertainty

The estimated noise variance in the previous section is not
a direct measure of uncertainty of the calibrated maximum

likelihood estimate f.;. We use bootstrapping to estimate
the uncertainty by resampling all the data that is input to
PaiCo. The proxy records are resampled with replacement,
which, according to the model in Eq. (1), takes into con-
sideration the effect of different noise realizations, tem-
poral structures and transfer functions. The instrumental

@ Springer

data is more difficult, since it is an uncertain representation
of the target climate variable and we only have a single
realization of it, hence we cannot carry out similar
resampling with replacement. To account for this uncer-
tainty, we assume the instrumental data is simply the target
climate variable added with zero mean Gaussian noise, i.€.,
! ~ N (£, 021), as is commonly done (Tingley et al. 2012).
However, since we do not have a non-noisy version of the
target climate variable during the instrumental period, we
use the instrumental data we have as an estimate of it. The
instrumental noise variance o needs to be given by the
user, since we have no reliable way of estimating it from a
single time series of instrumental data. Putting everything
together, a bootstrap sample is generated by resampling the
proxy records with replacement and adding to the instru-
mental data independent zero mean Gaussian noise with
noise variance o7, and using all this with PaiCo. The
bootstrap samples can then be used to calculate uncer-
tainties for the various statements made about the results.

The resulting ensemble is a collection of reconstructions
based on resampling the predictor network and, for each of
these bootstrapped data sets, scaling the pairwise MLE to
match the mean and variance of the instruments plus noise
over a calibration interval. The spread in the resulting
ensemble is a measure of the uncertainty in our best esti-
mate of the past climate. The ensemble produced in this
manner has a different interpretation than Bayesian pos-
terior sampling (Li et al. 2010; Tingley and Huybers
2010a), which produces a collection of equally likely real-
izations of the climate conditional on the data and modeling
assumptions. Our ensemble is useful for characterizing the
confidence in our best estimate of past climate that arises
from the particular collection of proxy time series used to
estimate model parameters. However, the ensemble cannot
be used to calculate probabilities for events in the past
climate, since the ensemble is based on a single realization
of the climate and not all possible realizations.

Note that if o7 is estimated, the accuracy of the estimate
affects the accuracy of the uncertainty estimates. If 67 is
underestimated, then the uncertainty is also underesti-
mated. As a special case, when the instrumental data is
noisy but the noise is ignored, then ¢7 can be seen to be
estimated as 0 and, therefore, it is severely underestimated.
An accurate instrumental noise variance is important for
the accuracy of the uncertainty estimates. Further dis-
cussing the estimation of the instrumental noise variance is
out of the scope of this paper.

2.7 Temporal fidelity

It has been suggested (Cook et al. 1995) that proxies have
different fidelities to represent variations of different
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temporal extent. For example, tree rings have been con-
sidered to only accurately represent variations in at most
decadal scale, while pollen records represent variations in
multidecadal and centennial scale (Moberg et al. 2005).
The likelihood function in Eq. (6) allows taking this
information into consideration. If, for example, one would
only trust a proxy record to accurately represent variations
in a decadal or smaller scale, it is possible to remove any
pairwise comparison for that record from Eq. (6) where
samples are more than a decade apart. This has the effect
that the comparison of a pair of proxy values is only
considered if the temporal distance is at most a decade. As
an example, if two proxy observations are separated in time
by 100 years, then the pairwise comparison between them
would not be included in the likelihood. PaiCo thus has the
flexibility to incorporate information from the proxies on
selective timescales, so can reflect the scientific under-
standing of proxies that are not faithful recorders of climate
at all timescales.

2.8 Inferring sample boundaries

Calculating the linear transformations X* requires knowl-
edge about the temporal boundaries of each sample of a
proxy record. However, this information is often not
available for records in the online databases nor even cal-
culated by the original investigators. Optimally, if the age-
depth model is available, the sample boundaries in depth
could be used with the age-depth model to infer the tem-
poral boundaries of each sample. However, the age-depth
model is not always available, but samples from it are often
tabulated with the proxy records as sample depth and
sample middle age. These data can be used to approximate
the age-depth model and to infer the temporal bounds of
each sample from the depth boundaries.

Let t¥ be the middle age of sample i of proxy record ,
and let df be the corresponding depth. The age does not
need to be the middle age, but can be the top or bottom age
as long as d} corresponds to the same position in the
sample. Let d¥ and d% be the top and bottom depths of
sample 7 of proxy record k, respectively. The idea is then to
use an appropriate interpolation method with t* and d* to
calculate the ages t and t5 at depths dY and d%. The
calculated top and bottom ages tﬁ and tﬁ‘z then define the
temporal boundaries for each sample i that can subse-
quently be used to define Xf‘

There are no restrictions to the interpolation method
used. However, there is a need for extrapolation at either
end, since, for example, middle ages and respective middle
depths do not cover the top nor bottom-most boundary of a
core. We use piecewise-linear interpolation since the

age-depth models are often not very complex functions and
thus a linear interpolation between samples is expected to
produce adequate results.

3 Comparisons between PaiCo and related methods

Several methods for climate reconstructions from multiple
proxy sources have been previously proposed. See Tingley
et al. (2012) for latest review. We compare PaiCo to
method-of-moments (MoM), also known as variance
matching (Lee et al. 2008); ordinary least squares (OLS);
principal component regression (PCReg, Tingley et al.
2012); RegEM (Schneider 2001); the method by Li et al.
(2010) (LNA) and BARCAST (Tingley and Huybers
2010a).

3.1 Qualitative comparisons

This section lists and discusses the most important prop-
erties of PaiCo and compares them to the selected climate
reconstruction methods. Table 1 summarizes the qualita-
tive comparison of different climate reconstruction meth-
ods. The comparison is based on the current state of the
methods. Many of the methods could possibly be extended
to improve their properties with respect to this comparison.

3.1.1 Transfer function

Existing climate reconstruction methods all assume the
transfer functions between proxy records and temperature
are linear. However, it is known that some proxies are not
linearly related to, for example, temperature (Anchukaitis
et al. 2012; Maidment 1993; Mann et al. 2012a, b; McKay
et al. 2008). When a non-linear transfer function is known
or adequately approximated, it may be possible to invert
the transfer function and bring the proxy record close to
linear. Furthermore, many of the published high-quality
proxy records are known to be linearly related to, for
example, temperature or are even reconstructions of the
temperature. Assuming linearity is often reasonable, and
many raw proxy observations are processed to reflect a
linear relationship with the target climate variable. If lin-
earity can be assumed for all of the proxy records in a
multi-proxy reconstruction, then linear methods should be
used, as the more general assumptions of PaiCo are not
required.

There may be cases where it is not reasonable to assume
linearity. For example, the values of the proxy in the pre-
diction interval may be different from those in the cali-
bration interval, so that the predictions based on linearity
require extrapolation of the linear relationship outside of
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Table 1 Summary of qualitative comparison of climate reconstruction methods

PaiCo MoM OLS PCReg RegEM LNA BARCAST
Transfer function Monotonic Linear Linear Linear Linear Linear Linear
Auto-correlated noise No No No Yes No Yes Yes
Multiresolution Yes No No No No Yes No
Standardization No Yes Yes Yes No No No

the calibration range. As the scientific understanding of
many proxies is imperfect, the less restrictive assumption
of monotonicity may be preferred. The weaker assumption
may allow for the inclusion of more data sources than
only those proxies that are well-known to have linear
relationships with the target climate. There is a trade-off in
doing so: on the one hand, PaiCo can include more infor-
mation in the form of additional proxies, while on the
other, PaiCo loses information from those truly linear
proxies by using the weaker assumption of a monotonic
transfer function. Quantitative experiments (Sect. 3.2)
suggest that the loss of information is small, as PaiCo
results in inferences that are competitive with linear
methods when applied to linear proxies.

3.1.2 Auto-correlated noise

In LNA, noise is assumed to follow an AR(2) model and
the parameters of the AR-process are estimated via
Bayesian inference. In BARCAST, the latent temperature
field is modeled as an AR(1)-process. It is possible to
utilize information about auto-correlated noise in both
PaiCo and RegEM, possibly with slight modification of the
current implementations of the methods. However,
obtaining this information may be difficult in practice, and
therefore, independent noise is often assumed for RegEM
and the same assumption is made for PaiCo in the rest of
this paper. In MoM and OLS, noise is assumed independent
(Tingley et al. 2012). While least squares regression
models can be built for correlated noise, we do not consider
the resulting weighted regression models as equivalent to
OLS as used in the paleoclimate community. In PCReg,
auto-correlated noise will likely appear as one or more
principal components, since, assuming the model of PCReg
is correct, the auto-correlated noise of each proxy is
independent between proxies and independent of the target.
If the principal components for regression are chosen
appropriately, the auto-correlated noise should be ignored.

3.1.3 Multiresolution
While many of the proxy records used to this day have

annual resolution, there are still numerous records that have
subannual resolution. Only LNA and PaiCo can handle
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proxy records of various resolutions. If neither of those
methods are used, the only viable option is to only use
proxy records with the same resolution and exclude any
other records. Note that BARCAST could be quite easily
extended to handle multiple resolutions with, for example,
ideas from LNA. However, this comparison is based on the
current state of these methods.

3.1.4 Standardization

The assumption of linearity for the transfer function is often
accompanied with the requirement to standardize the proxy
records to a common scale before reconstruction. MoM,
OLS and PCReg require the proxy records to be standard-
ized to the same units, or otherwise the proxies with a higher
sample variance may dominate the result. The problems of
standardization boil down to how accurately can the scale of
a proxy record be altered. Standardization is generally
carried out by shifting and scaling each proxy record to have
zero mean and unit variance over a specific standardization
interval, using standard estimators for mean and variance.
As standardization is carried out using sample, rather than
population, values of the mean and standard deviations, the
standardization itself is sensitive to the noise in these esti-
mators. Finally, as the proxy time series are generally of
different lengths, the standardization interval is generally
short relative to the time interval spanned by the data set as
a whole. In such cases, standardization can introduce spu-
rious structure into the time series of the standard deviations
across the records; see Tingley (2012) for further discussion
and suggested solutions. When standardization is not
required, the accuracy of these estimator is irrelevant and,
therefore, the problems of standardization do not carry to
the methods not requiring standardization.

The original definition of RegEM by Schneider (2001)
includes mean and variance terms for each proxy record,
and therefore, standardization may not be required. LNA
has different mean and variance parameters for each proxy
record. However, the parameters for noise are common to a
proxy type and the authors suggest that the proxy records
are standardized for the model of common noise to be
reasonable. However, assigning each proxy as its own type
removes the need to standardize. Similar to LNA, BAR-
CAST has a set of coefficients for each proxy type and
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defining each proxy record as its own proxy type renders
standardization unnecessary.

PaiCo does not require standardization as any shift and
scale operation can be considered to be contained in the
transfer function g* as long as the record is not flipped in
sign. The mean and variance of a record are not directly
used by PaiCo, and the method is invariant with respect to
arbitrary monotonic transformations of the proxy series.

3.2 Quantitative comparisons

In this section we compare the methods quantitatively in
two different pseudo-proxy scenarios.

For MoM, which is a CPS method, the uncalibrated
composite is produced by, for each year, calculating the
mean of the available standardized proxy values. For
PCReg, we estimate the number of significant principal
components from the eigenvalues (Mann et al. 2007). We
use total truncated least squares for RegEM and estimate the
truncation parameter with the same method as for PCReg.
For BARCAST, we set all the spatial locations to the same
coordinate, effectively removing the spatial component
from the model. We also experimented with the state-space
method by Lee et al (2008) with our implementation and
with an implementation received from the authors, but
failed to get either of them to converge. The method was
thus excluded. Implementations of all of the used methods
and Matlab source code for the experiments are available in
the Electronic Supplementary Material.

3.2.1 Demonstrating properties of PaiCo

We first demonstrate the properties of PaiCo in comparison
to other reconstruction methods using a set of idealized
experiments. A target time series is constructed from four
different parts concatenated in order: 100 point plateau at
height 10, 100 point linear trend from 10 to 0, 100 point
plateau at O and 200 point sinusoid with 1% angular fre-
quency and unit amplitude. Figure 3A illustrates an exam-
ple target time series. A pseudo-proxy record is generated
by adding independent Gaussian noise with standard devi-
ation o, to the target time series and normalizing them to
zero mean and unit variance. The calibration period is set to
the last 100 points, covering one complete cycle of the
sinusoid and leaving the rest as the reconstruction period. In
the experiments, the default setting has M = 20, where M is
the number of proxy records, o, = 1 for all proxies, and the
proxies are linear. The default is varied to show the simi-
larities and differences in the methods. The experiments are
run 40 times for each setting to show the mean behavior of
each reconstruction method. Figure 3 depicts all of the
results. Details of the experiment, such as parameter values

for each of the methods, are available in the Supplementary
Online Material.

Figure 3A depicts results with M = 20 and g, = .5. All
methods are very capable of reconstructing the target time
series with no significant differences. Figure 3B depicts the
relative error in recovering the plateau at 10 when the
number of proxy records is varied from 5 to 100. Many of
the linear methods behave similarly with PaiCo performing
equally well. OLS has trouble when the number of proxies
grows large, since the number of predicands is equal to the
number of samples. This could be remedied by applying
some kind of regularization. LNA performs best when
there are only few proxies. The relative performance of
both Bayesian methods decreases when the number of
proxies increases, but we believe this is a convergence
issue, rather than a weakness of the underlying methods.
As both have parameters for each proxy, adding proxies
makes convergence slower. During the iteration, both
methods came quite rapidly close to the plateu, but con-
vergence to it became increasingly slower with decreasing
distance. Therefore, we think the combination of the large
number of parameters to learn and the shape of the target
led to these convergence issues. We did moderate optimi-
zation and parameter tuning to try to speed up the con-
vergence. However, we kept the number of draws from the
posterior distribution fixed throughout the experiment due
to computational costs, which did not ensure convergence
in all cases. In a practical scenario, this issue could be
solved by adding more draws, constraining the sampling
and/or further tuning the initial parameter values.

Figure 3C depicts results with M = 20 and the common
o, was varied from .1 to 3. For moderate to large g., LNA
performs better than the other methods, with MoM, PaiCo
and BARCAST performing slightly above average in these
experiments. PCReg, RegEM, and OLS are below average
in this case. However, with small g, PaiCo has a very large
error. PaiCo is based on the fact that the proxy records are
noisy and the noise is the essential ingredient that makes
the proxies disagree in the pairwise comparisons. If the
noise is very small or completely removed, the proxies
completely agree and PaiCo reduces to a ranking of the
target climate variables. The errors of LNA and RegEM
similarly increased in low noise scenarios.

To explore the sensitivity of the methods to the
assumption of common noise variance made by PaiCo, we
compare results under varying levels of departure from this
assumption. In these experiments, the noise variance for
each proxy is calculated from

A i1
agzexp(d<2A’41—1>>,

where i is the proxy index and d is the parameter that
controls the dispersion of noise variance among proxies.
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Fig. 3 Results of experiments
demonstrating the different
characteristics of reconstruction
methods. Example target time
series is depicted in A as red
dashed line with initial plateau.
A pseudo-proxy is generated by
adding independent Gaussian
noise with standard deviation L
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With d = 0, all proxies have the same noise variance,
aé = 1, and the dispersion in the noise variances increase
with increasing d. Figure 3D illustrates the amount of noise
for each proxy as d varies from 0, i.e., flat, to 1, i.e., the
steepest curve. Figure 3E depicts the corresponding per-
formances of the reconstruction methods. The performance
of PaiCo degrades with increasing noise dispersion, and all
other methods perform better than PaiCo for d > .4. This
experiment was explicitly designed to highlight the limi-
tations of PaiCo, and in practice we would expect the range
of noise variances to be smaller than the d = .4 case. In
fact, we tested this by estimating the noise standard devi-
ation for each proxy in Kaufman et al. (2009) from the
residuals and calculating the coefficient of variation for
these estimated standard deviations. The coefficient of
variation is defined as the standard deviation divided by the
mean of a group of numbers, with larger values expressing
higher variation. The coefficient of variation for Kaufman
et al. (2009) is .13 while the coefficient of variation with
d = 4 is .25, and hence, the dispersion of noise variances
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.01 non-linearity .1

in Kaufman et al. (2009) is much smaller than in the case
d = 4. Therefore, PaiCo would most likely perform well
in that scenario. Notice that the decadal binning in Kauf-
man et al. (2009) has virtually no affect in this result, since
the mean and standard deviation of the estimated proxy
noise standard deviations are affected equally by the
averaging of the binning.

Last, we explore the sensitivity of the methods to the
linearity of the proxies. To produce non-linear proxies, we
use an arctan(lx) transfer function, where x is the input
value and / is the parameter controlling the amount of non-
linearity. Arctan is close to linear around zero and pro-
gressively more non-linear at values larger in magnitude
(Fig. 3F); we thus expect the performance of the linear
methods to suffer as [ increases from .01 to .2. We apply
the transfer function individually to each proxy after add-
ing the noise but before they are normalized to zero mean
and unit variance. Figure 3G depicts the results for varying
levels of non-linearity. As expected, PaiCo is the only
method that does not suffer in performance as the proxies
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become increasingly non-linear. The poor performance of
the linear methods is to be expected, as the transfer func-
tion is explicitly designed to be nearly linear over the range
of target values included in the calibration, but strongly
non-linear for larger values of the target. If the entire range
of the target variable were included in the calibration
interval, we would expect the performance of the linear
methods to improve, but to still not equal the performance
of PaiCo.

3.2.2 Auto-regressive pseudo-proxies

To test the performance of the methods in a more realistic
setting, we use the framework described in Tingley and
Huybers (2010b), in which a 500-point target time series is
generated as Gaussian noise with lag one auto-regressive
coefficient of .5. To increase the low frequency variability,
we add to this target time series a second time series with .9
lag one AR-coefficient. A pseudo-proxy is generated from
the target by adding varying amounts of white noise to it to
achieve a desired signal-to-noise (SNR) ratio. Depending
on the case, the pseudo-proxy is further transformed with a
random monotonic function. A number of these pseudo-
proxies are constructed to form a dataset of pseudo-proxy
records. Each of the methods are individually used with the
dataset and the root mean square error (RMSE), Pearson’s
product-moment correlation coefficient, Reduction in Error
(RE) and Coefficient of Efficiency (CE) are calculated.
RMSE is always divided by the standard deviation of the
target signal to arrive at comparable results.

We vary the number of proxy records (10, 20, 50, or
100), the signal-to-noise ratio (.4, .8, 1.2, 1.6, 2.0, 2.4, 2.8,
or 3.2) and the linearity of the proxies. For each non-linear
proxy record, a monotonic transfer function is generated by
first sampling two values, y; and y,, uniformly at random
from [0,1]. We then space the values {0, y;, y,, 1},
assuming y; < y,, evenly over the range of the noisy target
values. We use cubic interpolation to fit a function through
these points to transfer the noisy target values to the range
[0,1]. Cubic interpolation is guaranteed to create a function
that runs through the evenly spaced points {0, y;, y,, 1},
which means that the transfer functions will be monotonic.
We run the experiment 100 times for each combination of
parameter values to get a sense of the average behavior of
each of the methods. Figure 4 depicts all of the results.

In Fig. 4A, the average RMSE over 100 runs is shown
for each method and varying SNR values with 10 non-
linear pseudo-proxy records. Only PaiCo is able to come
close to the expected RMSE value, calculated as the
standard deviation of the sample mean estimator, with all
the linear methods having much higher values, particularly
for larger values of the SNR. When the noise dominates the
proxy data, i.e., SNR < 1, the methods behave somewhat
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Fig. 4 Results of experiments with autoregressive time series.
A Average root mean square (RMSE) values for each reconstruction
method using 10 non-linear pseudo-proxies. The estimated RMSE is
the standard deviation of the sample mean estimator without non-
linearities. RMSE’s are scaled with target standard deviation for
comparability. B Average RMSE values for each reconstruction
method using 50 linear pseudo-proxies. C Best methods with 5 %
confidence in different settings

similar with PaiCo still being slightly better. Figure 4B has
the same setting except that there are now 50 linear pseudo-
proxies. All of the linear methods achieve better perfor-
mance than before, to a varying degree. PaiCo, MoM and
BARCAST perform equally well when 1.2 < SNR < 2.2,
and better than the other methods. For small values of
SNR, all methods perform well, with BARCAST or LNA
having slightly smaller RMSE than the other methods. For
larger values of the SNR, the performance of BARCAST
decreases relative to the other methods—most likely due to
the convergence issues discussed above.

To give a more general sense of the the relative per-
formance of the methods, Fig. 4C plots the best method
according to four statistics for each combination of
parameter values. For a single set of parameters and a
single test statistic, the 100 runs result in 100 test statistic
values for each method. The method with the best average
test statistic value was chosen as the initial best method.
Then, each other method was compared to the initial best
method with a single-tail paired ¢ test. A method was
included in the group of best methods if the averages of the
test statistics were indistinguishable at 5 % confidence
level. This way we can find which methods are better than
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all the other methods, and among which supremacy can not
be statistically significantly determined. Note that multi-
plicity corrections need not be carried out here since we are
using the t-tests only as a tool to summarize the perfor-
mance of the methods in different settings.

Figure 4 shows a clear separation between the linear and
non-linear settings. PaiCo performs better than any of the
other methods when proxy records are non-linear, as
expected. When the pseudo-proxies are linear, BARCAST
is always among the best performing methods, with the
exception of low SNR cases for which LNA performs
better. However, PaiCo was unexpectedly also among the
best performing methods as measured by RMSE, RE and
CE when there are sufficiently many pseudo-proxy records
or the records have little noise. The performance of MoM
and PaiCo is often indistinguishable in the linear case. The
relative performance of the methods as measured by cor-
relation is similar to that measures by the RMSE, with the
exception that PaiCo is no longer one of the best methods.
BARCAST, which is by construction correct in all settings
where the proxies are linear, performs well in settings when
the proxies are noisy and few in number—provided they
are linear. In summary, PaiCo performs on par with MoM
when all proxy records are linear, and outperforms all
linear methods when the proxies records are non-linear.

3.3 Further quantitative properties of PaiCo

We calculate the average execution times of each of the
methods over all combinations of parameter values and 100
runs. PaiCo, RegEM, LNA and BARCAST are optimized
in several ways to reduce the computation time. BAR-
CAST was further modified to sample the complete spa-
tiotemporal field at once instead of sampling the spatial
field of each year separately in order to speed up its con-
vergence. The results are depicted in Fig. SA. RegEM and
BARCAST have similar execution times, while LNA is
several times slower. The most costly part of LNA is the
sampling of the AR(2)-coefficients, which is done using
Metropolis-Hastings and requires several calculations of
the normal CDF at each iteration. However, this could be
alleviated by using the uniform distribution as a proposal
density.

We analyze the correctness of the uncertainty estimation
of Sect. 2.6 by calculating the coverage rates as described
by Li et al. (2010). A coverage rate is calculated by first
deciding on a nominal level. Then, for each time point, the
uncertainty estimation is used to find the upper and lower
bounds corresponding to the quantiles of the nominal level.
The corresponding actual coverage rate is then the fraction
of time points for which the target is within the upper and
lower bounds, i.e., is covered by the confidence intervals.
We calculate the coverage rates in the same settings as
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before, but with 10 runs for each combination of parameter
values and we obtain 100 resamples in each case. Fig-
ure 5B depicts the difference between the actual coverage
and the nominal coverages. The uncertainty is slightly
underestimated with around 2.5 % error. However, the
errors are fairly small and, thus, the uncertainty estimation
seems to be quite accurate.

We also compare the power spectrum of PaiCo against
the power spectrum of the target using the method by
Welch (1967). Figure 5C depicts the average difference of
the power spectrums over different settings. When SNR is
small, the noise dominates the pseudo-proxy records and,
therefore, the low-frequency variability is underestimated
while high-frequency variability is overestimated. This is
expected from any method since, in high-noise cases, the
noise “overwrites” the information about the target in the
pseudo-proxies and, therefore, no method can recover
the low-frequency variability. When there is little noise, the
difference in power spectrums is much smaller. It seems
that the error of PaiCo can be decomposed to a slight
overestimation of the millennial to centennial scale vari-
ability and a slight underestimation of the centennial to
decadal scale variability. However, as shown in Fig. 4, the
errors in the reconstructions are among the smallest of any
reconstruction method in many of the tested settings.

As a final comparison, we also test the correctness of the
estimate of the standard deviation of the noise as shown in
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Eq. (8). Figure 5D depicts as a scatterplot the relation
between the true and estimated standard deviations of
noise. The noise standard deviation estimates are generally
quite good, but feature a slight bias towards underesti-
mating the true values. However, as the one-to-one fit has
R?> = 93 and RMSE = .028, it is clear that the estimated
standard deviation is quite accurate, especially when the
noise is fairly small.

4 Proxy data

The study region is the area north of 60°N and between
50°W and 30°E. This area encompasses the northernmost
part of the Atlantic Ocean and the surrounding land areas,
which are also assumed to be influenced by the Atlantic
climate. We focus on the temperature of the Arctic Atlantic
during the past 2,000 years. The multiproxy data set is
composed of all (to our knowledge) publicly available
records that meet four predetermined and objective criteria.

First, each included proxy series must be used as a
temperature sensitive proxy in the peer reviewed literature.
This assures that each proxy record was objectively
assessed by experts in the field and its relation to temper-
ature was also justified. Furthermore, we used the recon-
structed temperature whenever available. For example, we
only used reconstructed temperatures for marine sediments,
as PaiCo is unable in its current state to handle assemblages
as proxy records. We also applied the processing steps
suggested by the original authors. For example, if it was
suggested that the record is dominated by human influence
during some time period, we excluded such parts of the
record. We, therefore, rely on the original authors to pro-
vide the most accurate proxy records.

Second, each included record must extend back to at
least 1500 AD. There are far more short, modern records

Yt ice core

marine
sediment

> documenta;
A speleothemry

@ treering [

lake
+ sediment [

than long records, but by including only the longer records
we maintain the focus of the analysis on the last
2,000 years as a whole.

Third, we included only those records with at least one
well-dated age control every 500 years. As the method
considers the ages in records to be correct, controlling the
temporal quality becomes extremely important. This fairly
strict criterion ensures the chronology control is of high
quality and that we can be fairly certain about the age-
depth model. Many lake sediment records were not inclu-
ded because they did not meet this criterion. Notice that
varved (i.e., annually laminated) records are like trees, so
they essentially have a date for every year.

Fourth, all included records have on average at least one
observation every 50 years. We measure the resolution of a
record as the mean difference of sample ages, including
only those samples with ages between 0 and 2000 AD. We
required the average distance between mid-ages of samples
to be at most 50 years, so that those record covering the
entire 2,000 year feature at least 40 observations. The
resolution criterion was set to exclude low-resolution
proxies that have little effect on the overall result. Borehole
records and many lake sediment records were excluded on
the basis of this resolution criterion.

Figure 6 shows the locations of the collected proxy
records and their temporal structure. Details of each record
are listed in Table 2. The study area is likely richer in long,
high quality proxy records than any other region in the
Arctic. Furthermore, the whole study area is fairly evenly
covered without any significant clusters. The dataset is also
heterogeneous in proxy sources. The ice core records
constitute two fifths of the database, while the tree, marine
and lake proxies share the remaining portion quite equally.
We have also included a documentary record of sea ice
history in Iceland, and a single speleothem record from
Norway. While many of the records have previously been
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Fig. 6 The locations of the proxy records and their temporal structure from O to 2000 AD. A continuous box on the right represents annual
resolution. Otherwise, each box represents the temporal boundaries of a single sample
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interpreted as linearly related to temperature, we note that
the the experiments in Sect. 3.2 suggest PaiCo is often
competitive with linear methods when applied to linear
proxies. Further, it is unlikely that assumption of linearity
holds for all proxy records used here. The dataset is
available in the Electronic Supplementary Material.

5 Results

Our Arctic Atlantic composite PaiCo reconstruction for
the last 200 years is shown as temperature anomalies
(reference period 1961-1990) in Fig. 7A, including noise
estimation from Eq. (8) and uncertainty from Sect. 2.6
with 1,000 resampled time series. The annually resolved
temperature reconstruction is significantly correlated
(r = .30 with p < .001) with the instrumental surface air
temperature (SAT) time series, derived as an area-weigh-
ted mean from the HadCRUT3 global temperature data-
base (Brohan et al. 2006) from the meteorological stations
of the corresponding region. Statistical significance is
calculated by resampling 10* random time series with the
same AR(1) correlation coefficient (.45) as the recon-
struction, and calculating the fraction of random time
series that had equal or larger correlation with the
instrumental target than the reconstruction. The instru-
mental noise standard deviation for uncertainty estimation
is obtained by first calculating the variance of the mean
estimator for each year, and then calculating the square
root of the average of these variances. The uncertainties in
the following statements are reported in parenthesis as
either a percentage of ensemble members for which the
statement holds, or the mean and standard deviation of a
statistic calculated from the ensemble. The ensemble is a
collection of 10* bootstrapped reconstructions of the
temperature, calculated according to Sect. 2.6 on the
annual timescale.

Three distinct periods can be discovered in the observa-
tional record: strong regional warming over 1900-1940 and
1970-2000 separated by equally strong cooling from 1940 to
1970. The reconstruction generally reproduces these same
features, although annual inspection reveals some deviations
or even inverse correlations. The significant correlation
between reconstructed and measured air temperature
anomalies holds back with the onset of the instrumental
record, around 1850. Within the last 200 years, North
Atlantic temperatures were clearly below average between
1800 and 1900 (for 100 %, average of nineteenth century
<0), and mostly above the average during the last century
(for 90 %, average of 1920-2000 >0).

In Fig. 7B, we show the outcome of the PaiCo recon-
struction for the entire 2,000 years, smoothed by calculat-
ing the average temperature for each decade. The decadal
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temperature reconstruction is significantly correlated
(r = .84 with p < .001) to the decadal instrumental data.

Among the strongest overall features in our composite
temperature reconstruction is a cooling from 1 to 2000 AD,
with least squares linear regression yielding a cooling trend
of —.33 °C/1,000 years (—.30 £ .09). Superimposed on
this cooling trend, another striking feature of the record is
the pronounced low-frequency climate variability. On the
basis of these clearly distinguishable climate fluctuations,
the last 2 ka of climate evolution in the studied Arctic
Atlantic domain can be subdivided into the Roman Warm
Period (RWP, until ca. 600 AD), the Dark Ages Cold
Period (DACP, ca 600 to 900 AD), the Medieval Climate
Anomaly (MCA, ca. 900 to 1200 AD), the Little Ice Age
(LIA, ca. 1500 to 1900 AD), and the Recent Warming
(RW, 1900 to present). The overall temperature variability
in our 2,000 year long record is 2.3 °C (95 % of values lie
within this range; ensemble has range 2.5 + .4 °C), with
lowest values in the first part of the nineteenth century,
during the LIA, and peak maxima during the RWP around
400 AD, the early MCA at 1000 to 1150 AD, and in the
modern industrial period. The LIA shows clear evidence of
multidecadal climatic variability, such as the three suc-
cessive warm phases between 1400 and 1600 AD. In all,
the end of LIA (1600 to 1900 AD) appears to be climati-
cally more uniform than its initiation.

We compared the PaiCo Arctic Atlantic reconstruc-
tion (Fig. 7C) with another previously published Arctic
(Kaufman et al. 2009) and some widely used Northern
Hemisphere (Moberg et al. 2005; Mann et al. 2008) recon-
structions based on various combinations of proxy data and
differing statistical approaches. This comparison demon-
strates rather striking agreement between alternative esti-
mates over the past eight centuries. Prior to 1200 AD, the
reconstructions still all agree rather well in respect to the
overall temporal patterns, yet our new Arctic Atlantic record
shows much greater variability over time. Our reconstruction
is .29 °C warmer than the other records during the MCA
(.26 £ .19) and .56 °C warmer during the RWP (.56 + .23).
The episode around 400 AD in our reconstruction is .63 °C
warmer than in any other reconstructions (.55 & .28).

Figure 8 illustrates the most pronounced warming and
cooling trends, calculated by finding the window with the
steepest linear trend for each window size from 10 to 400,
with overlapping windows merged together. A persistent
and rapid multidecadal warming trend of 4.5 °C/100 years
(3.9 £+ .9) took place in the onset of the modern (industrial)
times, in particular, from 1900 to 1940 AD, which is
consistent with other studies (see Sect. 6) Another sys-
tematic, rapid warming of 1.0 °C/100 years (.94 £+ .23)
occurred from 700 to 800 AD. Conversely, the most sys-
tematic, fast and multidecadal cooling rate of —6.2 °C/
100 years (—5.4 £ 1.5) occurred in the termination of the
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Table 2 Details of used proxy records. Extent indicates the temporal span of a record in AD. The ‘Resolution’ is the average difference between
sample mid-ages within 0-2000 AD

ID Site °N °W Proxy type Measurement Extent Resolution Reference

1  Dye-3 65.18 —43.83 Ice core 5'%0 1-1978 Annual Vinther et al. (2010)

2 Renland 71.27 —26.73 Ice core 5'%0 2.5-1983 5.00 Vinther et al. (2008)

3 Créte 71.12 —37.32 Ice core 5'%0 553-1973 Annual Vinther et al. (2010)

4  GISP2 72.10 —38.08 Ice core 5'%0 818-1987 Annual Grootes and Stuiver (1997)
5 GRIP 72.58 —37.64 Ice core 5180 1-1979 Annual Vinther et al. (2010)

6 BIl6 73.94 —37.63 Ice core 5'%0 1,478-1992 Annual Schwager (1999)

7  NGRIP1 75.10 —42.32 Ice core 5'%0 0-1995 Annual Vinther et al. (2006)

8 BI8 76.62 —36.40 Ice core 5'%0 871-1992 Annual Schwager (1999)

9  Longyearbyen 78.25 15.50 Ice core 3'%0 769-1997 Annual Divine et al. (2011)

10 B2I 80.00 —41.14 Ice core 3180 1,397-1993 Annual Schwager (1999)

11 Austfonna 79.83 24.02 Ice core 5180 1,400-1998 Annual Isaksson et al. (2005)

12 P1003 63.76 5.26 Marine sediment &'0 —5,931-1998 8.44 Sejrup et al. (2011)

13 MD99-2275 66.55 —17.37 Marine sediment Diatoms —2,549-2001 3.89 Jiang et al. (2005)

14 MD99-2275 66.55 —17.37 Marine sediment Alkenones —36-1949 19.53 Sicre et al. (2011)

15 MD95-2011 66.97 7.64 Marine sediment Diatoms —6,540-1440 28.04 Berner et al. (2011)

16 MD95-2011 66.97 7.64 Marine sediment Alkenones —4,076-1995 9.86 Calvo et al. (2002)

17 MSMS5/5-712 78.92 6.77 Marine sediment Planktic foraminifers —94-2007 41.46 Spielhagen et al. (2011)
18 Iceland 64.77 —18.37 Documentary Ice cover 945-1935 30.00 Bergthorsson (1969)

19 Okshola cave 67.00 15.00 Speleothem 5'%0 —5,565-1997 31.92 Linge et al. (2009)

20 Jamtland 63.50 15.50 Tree ring Maximum density 1,107-2007 Annual Gunnarson et al. (2010)
21 Tornetridsk 68.26 19.60 Tree ring Maximum density 500-2004 Annual Grudd (2008)

22 Forfjorddalen 2 69.08 17.22 Tree ring Ring width 877-1994 Annual Kirchhefer (2001)

23  Finnish Lapland ~ 69.00 25.00 Tree ring Ring width 0-2005 Annual Helama et al. (2010)

24 Lake Hamptrask  60.28 25.42 Lake sediment Chironomids 1,330-2000 14.57 Luoto et al. (2009)

25 Lake Nautajarvi  61.81 24.68 Lake sediment Organic matter 0-1800 Annual Ojala and Alenius (2005)
26 Lake Korttajarvi  62.33 25.68 Lake sediment X-ray density 0-1720 Annual Tiljander et al. (2003)
27 Lake Lehmilampi 63.62 29.10 Lake sediment Varve thickness 1-1800 Annual Haltia-Hovi et al. (2007)

RWP from 590 to 620 AD. Another steep cooling trend of
—1.4 °C/100 years (—1.2 £ .4) occurred between 400 and
490 AD. The longest cooling trend of —.31 °C/100 years
(—.28 £ .08) was seen between 990 and 1410 AD. The
millennial-scale average cooling trend is —.36 °C/
1,000 years (average slope of each 1,000 year window;
ensemble has —.32 £ .11).

6 Discussions and conclusions

We have presented a new method for reconstructing spa-
tially averaged climate variables from multiple proxy
sources. The key advantage of the method is the very
general assumption about transfer functions. In contrast to
all existing reconstruction methods, the presented method
only assumes the transfer functions are monotonic. This
allows the use of proxy records that display non-linear
behavior but for which the transform function is unknown
or for which linearity can not be assumed or tested. The

monotonicity assumption does not exclude records, since
all positive linear transfer functions are also monotonically
increasing and, therefore, any linear proxy record can also
be used.

The assumption of monotonicity instead of linearity
comes at a cost. Considering only the order of the values
for each pair of proxy values means that the information
about the magnitudes in a proxy record are ignored. If the
magnitudes in a proxy record are trustworthy information,
losing such information is not desired where high-quality
proxy data is scarce to begin with. If it is certain that the
transfer functions between proxy records and target climate
variable are linear, then linear methods should be used as
their power is greater in such cases as they utilize all of the
available information. However, the qualitative and quan-
titative comparisons to existing reconstruction methods
suggest that reconstruction resulting from PaiCo should be
comparable, according to standard metrics, with those
resulting from existing linear methods, even if the linear
assumption is adequate for all proxies.
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Another advantage of PaiCo is that it allows for the
inclusion of all proxy records on their original resolutions.
While not unique to PaiCo, the only other currently
available method that can do this is the linear method by Li
et al. (2010). The formulation of LNA could easily be used
to extend BARCAST to also have proxies of various res-
olutions. The task is more difficult for the other tested
methods.

These Bayesian techniques produce an ensemble of
equally likely climate histories conditional on the observa-
tions. The Bayesian ensemble has a different interpretation
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than the ensemble of bootstrapped reconstructions used
here, as it provides a distribution of equally likely climate
histories conditional on a fixed data collection, whereas the
ensemble used here is based on bootstrapping the predictors.
We leave for future work a Bayesian implementation of
PaiCo.

PaiCo makes the assumption that the noise variance is
the same for all proxy records, meaning that each proxy is
assumed equally informative of the target climate variable.
The quantitative comparisons suggest that PaiCo allows
for small amount of dispersion of noise variance among
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proxy records, which is to be expected in a real scenario.
Indeed, PaiCo performed at par with other methods at the
level of dispersion that was encountered by Kaufman et al.
(2009).

The millennial-scale average cooling trend in our
reconstruction is consistent with other proxy evidence
showing that summer temperatures across the Arctic
reached their maximum during the early Holocene, after
which the climate progressively cooled towards the present
(Wanner et al. 2008; Miller et al. 2010). The cooling can
be associated with the monotonic reduction in summer
insolation at high northern latitudes, driven by orbital
configurations. In a millennial perspective, a pattern of the
long term cooling has been revealed from the western
Arctic ice cores (Kotlyakov et al. 2004) as well as the
multi-proxy reconstruction of Arctic summer SAT (Kauf-
man et al. 2009). Even though the cooling trend magnitude
estimated for circum-Arctic summer SAT, on the order of
—.22° £ .06 °C/1,000 years (Kaufman et al. 2009), is
lower than the —.36 °C estimate for the Arctic Atlantic
region, there is a qualitative similarity between the two
reconstructions (Fig. 7). The insolation-driven cooling in
the North Atlantic realm was presumably enhanced by
numerous positive feedbacks (e.g., albedo, sea ice) that
amplified the forcing more strongly in the area than else-
where in the Arctic. In particular, a substantial sensitivity
to variations in sea ice extent provide a reasonable expla-
nation for this discrepancy.

Our study clearly demonstrates that the late-Holocene
climate was more variable and extreme in the North
Atlantic region than Arctic as a whole. This finding is in
accordance with Mann et al. (2009) who found Medieval
warmth and LIA cooling to be particularly pronounced in
the high-latitude North Atlantic. One way to measure the
relative MCA warmth is through the difference with the
LIA. However, in such comparison it is crucial which time
interval to choose to represent MCA and LIA (Goosse
et al. 2012). Frank etal. (2010) used the intervals
1601-1630 and 1071-1100 for LIA and MCA, respec-
tively, and found a relative hemispheric-mean MCA
warmth of .38 °C, whereas Goosse et al. (2012) found in
their simulations slightly smaller warmth of .33 °C using
the same periods, but greater warmth of .37 °C when using
a slightly different definition (i.e., 1620-1650) for the LIA.
Our study suggest that the relative warmth in the Arctic
Atlantic is more than double that of the previous studies:
.86 °C (.76 £ .28) when using the time periods of Frank
et al. (2010) and .91 °C (.81 % .27) when using the time
period of Goosse et al. (2012) for LIA.

In our reconstruction, the MCA in total lasted approxi-
mately from 800 to 1200 AD (peak warming around 1000
AD), while LIA was exceptionally long in duration, from
1250 to 1900 AD, with the coolest phase between 1600 and

1900 AD. In literature, the duration of the MCA varies
greatly: 950-1100 AD (Mann et al. 2008), 950-1250 AD
(Mann et al. 2009; Goosse et al. 2012), 850-1350 AD
(Patterson et al. 2010), 800-1300 AD (Jungclaus 2009),
900-1350 AD (Graham et al. 2011), 950-1200 AD (Miller
et al. 2010), and 950-1400 AD (Diaz et al. 2011). According
to current understanding, the MCA was not a universally
warm epoch (see, however, Graham et al. 2011), although
much of the Arctic was warm during the Medieval times. In
contrast, the LIA, which most studies date between 1500 and
1850 AD, was most probably a global phenomenon (Mann
et al. 2009). In our proxy data, the coldest temperatures of
the LIA were experienced in first part of the nineteenth
century, in accordance with Overpeck et al. (1997).

The most pronounced warming phase in our recon-
struction occurred between 1900 and 1940, which is clearly
seen in the measured meteorological records as well. In the
instrumental record, positive SAT anomalies were largest
in the Arctic Atlantic region during this period (Wood and
Overland 2010). This early twentieth-century warming
(ETCW) has been subject to many studies, yet its reasons
still defies full explanation. Natural and anthropogenic
(land-use, aerosols) forcings are believed to have contrib-
uted to the ETCW (e.g., Delworth and Knutson 2000;
Bengtsson et al. 2004; Bronnimann 2009). According to
Chylek et al. (2009), the Arctic warming from 1900 to
1940 proceeded at a significantly faster rate than the
warming during the more recent decades and was highly
correlated with the Atlantic Multi-decadal Oscillation
(AMO) suggesting that the Arctic temperature variability is
highly linked to the Atlantic Ocean thermohaline circula-
tion at various temporal scales.
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